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Aim: We examined methylation changes in cell-free DNA (cfDNA) in metastatic castration-resistant
prostate cancer (mCRPC) during treatment. Patients & methods: Genome-wide methylation analysis of
sequentially collected cfDNA samples derived from mCRPC patients undergoing androgen-targeting ther-
apy was performed. Results: Alterations in methylation states of genes previously implicated in prostate
cancer progression were observed and patients that maintained methylation changes throughout therapy
tended to have a longer time to clinical progression. Importantly, we also report that markers associated
with a highly aggressive form of the disease, neuroendocrine-CRPC, were associated with a faster time
to clinical progression. Conclusion: Our findings highlight the potential of monitoring the cfDNA methy-
lome during therapy in mCRPC, which may serve as predictive markers of response to androgen-targeting
agents.
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Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer-related deaths among
males [1,2]. Androgen deprivation therapy (ADT) to reduce systemic androgen levels continues to be the major
treatment for aggressive PCa [3]. While ADT is initially beneficial, treatment resistance leads to the most lethal
form of PCa, metastatic castration-resistant prostate cancer (mCRPC) [4]. Despite castrate levels of systemic
androgens, these tumors can continue to rely on the androgen receptor (AR) pathway to promote tumor growth
and metastasis [5]. Indeed androgen-targeting agents, enzalutamide and abiraterone acetate, can improve overall
and progression-free survival in both the pre- and postchemotherapy settings [6–9].

Enzalutamide is an antiandrogen that directly inhibits the AR and Abiraterone inhibits CYP17A1, which catalyzes
extragonadal androgen production [10,11]. Both treatments perform similarly to suppress the androgen pathway
and choice of treatment is often dependent on comorbidities [12]. However, primary and eventual secondary
resistance to abiraterone or enzalutamide remains an ongoing challenge. As a result, the treatment landscape of
mCRPC is complex and continues to focus primarily on the order/sequencing of therapies. For instance, recent
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trials demonstrated early treatment with abiraterone or enzalutamide in the hormone-sensitive state could be
beneficial [13–15]. However, there is a diverse array of molecular drivers contributing to disease heterogeneity among
mCRPC patients [16,17], leading to variable response to current treatment strategies. Therefore, reliable biomarkers
are needed to facilitate optimal therapy sequences for each patient prior to starting treatments.

Liquid biopsies are emerging as a minimally invasive source of biomarkers, reflecting tumor turnover [18].
Numerous studies have explored the potential of circulating tumor cell (CTC) or circulating nucleic acid markers
in mCRPC [19]. Counting the number of CTCs and/or characterization of molecular alterations (i.e., genomic
and transcriptomic) are promising markers that capture tumor heterogeneity [20]. For instance, increased CTC
number is associated with poor prognosis and expression of the ligand-independent AR-V7 splice variant by
CTCs is associated with resistance to enzalutamide and abiraterone [21–23]. However, low CTC counts prior to
first-line treatment and the need for robust CTC surface markers for their optimal detection remain an ongoing
challenge [24,25]. Furthermore, some AR-V7 positive patients may still benefit from androgen therapies, while certain
AR-V7 negative patients show variability in treatment response [26,27]. In addition, highly aggressive androgen-
independent neuroendocrine-CRPC (NE-CRPC) tumors express lower levels of AR-V7 than adenocarcinoma-
CRPC patients [28]. Therefore, additional markers are needed to identify this subset of patients.

Circulating cell-free DNA (cfDNA) can harbor tumor-specific somatic mutations and capture tumor heterogene-
ity [29]. There is a high concordance (>90%) of tumor mutations (i.e., AR, BRCA2) between matched cfDNA and
mCRPC biopsies [18]. Although the proportion of circulating tumor DNA can vary from 1–2% to approximately
30% of cfDNA in mCRPC, the sequencing throughput of massively parallel sequencing platforms can sample
cfDNA with sufficient coverage [30]. For instance, targeted sequencing of AR in cfDNA can detect mutations
associated with resistance to enzalutamide or abiraterone [31,32]. However, genomic aberrations are not the only
contributors to molecular and phenotypic heterogeneity in mCRPC. Aberrations in the epigenome are a hall-
mark of all stages of PCa, including DNA methylation alterations [33,34]. Hypermethylation in promoter regions
of several genes, such as GSTP1, APC, HOXD3 and TBX15, are currently being investigated as diagnostic and
prognostic markers in earlier stages of PCa [34,35]. Furthermore, in biopsy tissue from metastatic lesions, distinct
DNA methylation patterns were observed between NE-CRPC and adenocarcinoma-CRPC [28].

CpG methylation can be detected from DNA extracted from tissue and various biofluids [36–38]. The presence of
promoter methylation in GSTP1 and APC in cfDNA from mCRPC patients is prognostic of overall survival [36,39].
Using an array-based platform, differential cfDNA methylation patterns were observed between abiraterone-
responsive versus -resistant patients [37]. Recently, NE-CRPC tissue-derived methylation signals were shown to
be detectable in matched plasma samples [40]. While these observations are promising, extensive genome wide
analysis of the mCRPC cfDNA methylome during enzalutamide or abiraterone treatment has not been performed.
To identify circulating DNA methylation changes associated with response to either enzalutamide or abiraterone
treatment, we monitored sequentially collected cfDNA samples from mCRPC patients, starting from prior to
treatment initiation to eventual clinical progression and performed genome-wide methylome assessment.

Given that biopsy tissue samples are not easily obtainable in the clinical setting, especially for bone metastases,
we addressed whether analysis of intrapatient cfDNA methylation changes without a priori knowledge of matched
tumor methylation patterns and whether integration with tissue methylation datasets is required to correlate with
response to treatment. We identified key genes known to have altered methylation states in PCa and found genomic
regions associated with clinical progression. Furthermore, as these changes could be from tumor and non-tumor
derived cfDNA, we combined our findings with published data and revealed cfDNA methylation patterns associated
with worse clinical prognosis during androgen-targeting treatment.

Patients & methods
Patient cohort
All patients in this study were recruited from the Princess Margaret Cancer Centre Genitourinary Clinic and
informed written consent was obtained in accordance with approved institutional Research Ethics Board pro-
tocols from University Health Network (UHN) and Sinai Health System (SHS). The UHN Genitourinary
Biobank performed patient recruitment, blood collection and clinical follow-up. All patients were chemother-
apy naive and developed resistance following initial PCa treatments (local therapies and ADT) (Supplemen-
tary Table 1). A total of 12 enzalutamide-treated (160 mg daily) and 4 abiraterone-treated patients (1000 mg
daily + prednisone/dexamethasone) completed study visits for cfDNA methylome analysis. Blood was collected
at three time points: prior to starting treatment (Visit A), at 12-weeks during treatment (Visit B) and upon
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clinical progression/treatment change (Visit C). While we aimed to collect Visit B around week-12 (± 2 weeks),
average time from baseline for Visit B was 12.7 weeks (ranging between 9 and 17 weeks). Serum prostate-specific
antigen (PSA) levels were obtained throughout treatment and the lowest PSA level (nadir) was used to deter-
mine PSA progression. Clinical progression was determined by several factors, including radiological evidence of
additional/worsening metastases and symptomatic changes as assessed by the treating physician.

Blood sample processing & cfDNA isolation
Blood was collected at each time point in citrate cell preparation tubes (BD Biosciences, CA, USA) and samples
were processed within 2 h from collection. Plasma was separated from peripheral blood mononuclear cells by
centrifugation at 1800 × g for 20 min (2 spins/sample). Isolated plasma was divided into 1 ml aliquots and stored
at -80◦C. Prior to cfDNA isolation, frozen plasma samples were rapidly thawed at 37◦C and spun at 16 000×g for
5 min. For each visit, we utilized 4 ml of plasma and cfDNA was isolated using the QIAamp Circulating Nucleic
Acid Kit (Qiagen, Hilden, Germany). The concentration of cfDNA was determined using the Qubit dsDNA
High Sensitivity Assay Kit (Thermo Fisher Scientific, MA, USA) and cfDNA fragment distibrution was obtained
using the Agilent 2100 Bioanalyzer System. To avoid within-patient batch effects, we isolated plasma cfDNA and
performed methylation analysis for all visits from each patient together.

Cell-free methylated DNA immunoprecipitation and high-throughput sequencing protocol
Genome-wide methylation profiling was performed using a published protocol: cell-free methylated DNA immuno-
precipitation and high-throughput sequencing (cfMeDIP-seq) [41]. Briefly, isolated cfDNA was first end-repaired
and A-tailed using the KAPA HyperPrep kit (Roche, Mannheim, Germany), followed by adapter ligation with
index adapters (Integrated DNA Technologies). Each adapter-ligated cfDNA sample was then spiked with λ phage
DNA (Thermo Fisher Scientific) as filler DNA, as well as methylated and unmethylated control Arabidopsis thaliana
(AT) DNA (Diagenode, NJ, USA) to bring the total DNA amount to 100 ng. Prior to immunoprecipitation, 10%
of each sample was saved as input control. The Diagenode MagMeDIP and IPure v2 kits were utilized to enrich
and purify methylated cfDNA. Prior to library amplification, qPCR quality checks were performed to ensure: (1)
high specificity (>95%) for enrichment of methylated AT DNA over unmethylated AT DNA and (2) appropriate
adapter-ligation. This was followed by adapter-specific amplification of each MeDIP and input control library and
gel size selection. All sequencing was performed on the Illumina HiSeq 2500 platform (50-bp single end reads).

Sequencing data preprocessing & differential methylation analysis
Raw sequencing data was aligned to the hg19 reference genome using Burrows-Wheeler alignment (BWA version
0.7.6a, using ‘mem’ option with default settings, except using -M flag). Duplicated reads were marked by Picard
tools (https://broadinstitute.github.io/picard/) and collapsed to allow only one copy of the reads from reads
that have the same alignment position. Reads mapped to the multiple locations were removed by applying
alignment quality threshold (QA >5). As the sequencing data was single-end, the average DNA fragment length
was evaluated for both cfMeDIP and input controls using self-correlation technique [42]. For each library, the
fragment coverage genomic profile was calculated using directional extension of all aligned reads with estimated
average fragment length (175 bp in our case) using an in-house BAM2WIG custom tool (M Bilenky, see http:
//www.epigenomes.ca/tools-and-software). Within-patient differential methylation analysis for all comparisons was
performed using DMRHunter pipeline developed for cfDNA samples (Supplementary methods). The code for
DMRHunter is available on www.epigenomes.ca/tools-and-software/dmrhunter.

Statistical analysis of mCRPC-associated DMRs
Spearman correlation analysis was performed using the base package of R (v3.5.3). Receiver operating characteristic
curve analysis was performed using the pROC package (1.14.0). All data were visualized using the ggplots2 package
(v 3.1) and heatmaps were generated using the ComplexHeatmap package (v1.2). Pathway analysis is described in
the Supplementary methods.

Results
Study design & patient cohort
Tumor methylation signatures can be identified through comparison of cancer patients’ cfDNA with either matched
tumor tissue or healthy control cfDNA [41]. In the case of mCRPC, biopsy of metastatic lesions in bone is not
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Tumor-related cfDNA Other cfDNA Down: Loss/reduction of methylated cfDNA fragment
Source: Treatment responsive cells

Up: Gain/increase of methylated cfDNA fragment
Source: Treatment resistant cells
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Figure 1. Within patient differential methylation analysis strategy to monitor temporal changes in cell-free DNA. In
order to identify methylation changes associated with treatment in cfDNA, we opted to perform within-patient
methylation analysis to identify DMRs associated with tumor response and/or resistance to current treatments. Each
patient in this study received either enzalutamide or abiraterone acetate and blood was collected prior to initiating
therapy (Visit A), at 12 weeks during treatment (Visit B) and upon clinical progression/treatment change (Visit C). We
applied an established genome-wide method to detect methylated cfDNA fragments followed by extensive analysis
to identify DMRs associated with treatment response. We compared all study visits available (Visit B vs A, C vs B and C
vs A) to find losses or gains in methylated cfDNA fragments. For instance, loss of treatment responsive tumor cells
(green methylated DNA fragments at visit B or gains in treatment insensitive/resistant tumor cells (blue DNA
fragments at visit C) could be detected with this strategy.
cfDNA: Cell-free DNA; DMR: Differentially methylated region.

routinely feasible. Therefore, to identify methylation markers associated with response to therapy, we opted for
within/intrapatient differential methylation analysis. We hypothesized that sequential collection of cfDNA from
visit A (baseline/pretreatment) to visit B (week 12) to visit C (clinical progression) would reveal changes in the
cfDNA methylome that reflect responses to treatment, with each patient serving as their own internal control.
As outlined in Figure 1, intrapatient comparison could potentially detect changes in abundance of methylated
DNA fragments related to tumor response. For instance, loss of methylated fragments may reflect loss/reduction
of tumor cells sensitive to treatment. In contrast, gains in methylated fragments could be associated with gains
in treatment-resistant tumor cells. Therefore, we first examined intrapatient differentially methylated regions
(DMRs) to assess overall changes in cfDNA during treatment. Since changes in the methylome could occur due to
non-tumor/treatment-related changes, we then integrated these DMRs with tumor-derived methylation datasets.

We prospectively collected plasma from mCRPC patients receiving either enzalutamide (n = 12) or abiraterone
acetate (n = 4) treatment. In total, 45 blood samples were collected and summarized in Figure 2A. Two enzalutamide-
treated patients were unable to provide Visit C samples (P2 and P26) and one abiraterone-treated patient progressed
prior to Visit B (P36). The majority of patients (14/16) presented with bone metastatic lesions upon mCRPC
diagnosis, with a subset showing lymph node and soft tissue metastases (Figure 2B). A total of 12 patients
demonstrated an initial favorable PSA response (≥50% decline from baseline, Figure 2C) and most patients
exhibited maximal PSA response (favorable or plateau) around Visit B (Supplementary Figure 1). Overall time to
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Figure 2. Sample collection and patient clinical follow-up overview. (A) Plasma samples from mCRPC patients receiving enzalutamide
(12 patients) or abiraterone acetate (four patients) were collected at baseline (Visit A), at week 12 (± 2 weeks, Visit B) and upon clinical
progression (Visit C). The total number of samples collected at each visit is shown. Two enzalutamide-treated patients (P2 and P26) were
unable to provide samples for Visit C and one abiraterone-treated patient (P36) progressed prior to Visit B. For these patients, the date of
treatment change/clinical progression was recorded for data analysis. (B) Pie chart summarizes the distribution of metastasis locations at
mCRPC diagnosis. (C) Bar plot shows best PSA response for each patient during treatment (nadir), expressed as a percentage of
Baseline/Visit A PSA. Dotted line indicates ≥50% decline in PSA from Visit A. (D) Overall timeline of study follow-up starting from Visit A
to Visit C/final visit is shown for all patients. Green dots represent Visit B, red dots are Visit C or final study visit (if Visit C was not
collected), yellow indicates lowest PSA level (nadir) and blue dots show first PSA rise during treatment.
mCRPC: Metastatic castration-resistant prostate cancer; PSA: Prostate-specific antigen.
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clinical progression (TTP) varied for each patient, ranging from rapid/primary resistance to therapy to treatment-
driven resistance following initial favorable response (Figure 2D).

Performance of cfMeDIP-seq strategy with PCa cell line DNA & cfDNA samples
We utilized an established cfMeDIP-seq approach, which was developed for low amounts of cfDNA and capable of
detecting circulating tumor DNA fractions as low as 0.001% [41]. This technique is able to distinguish methylation
patterns between various cancer types, including pancreatic, breast and colorectal cancer. Briefly, methylated cfDNA
was enriched using an antibody specific for methylated CpG sites, followed by amplification of adapter-ligated
libraries. For each sample, 10% of the DNA was reserved as an input control (without immunoprecipitation).

To benchmark this methodology for PCa samples, we generated a control from genomic DNA derived from PCa
cell line, 22Rv1, sheared to the same size as cfDNA (Supplementary Figure 2). As an additional control, we spiked
all samples with methylated and unmethylated AT DNA and confirmed increased recovery of methylated AT DNA
(∼80%) compared with unmethylated DNA (<0.06%) (Supplementary Figure 2A). Spiked AT DNA was added
following sequencing adapter ligation to cfDNA and was not detectable during sequencing. Increased enrichment
of known methylated genes/regions in the genome of 22Rv1 cells [43], including the CDKN2A gene body and
the first exon of TGFB2, compared with the unmethylated promoter of HOXD8 was confirmed (Supplementary
Figure 2B).

We performed cfMeDIP-seq on all 45 samples collected. The average starting amount of dsDNA was 27 ng
and ranged from 9 to 50 ng, with no significant differences in cfDNA amounts across visits and treatments
(Supplementary Figure 2C). Following alignment and base quality filtering, 48–62% of the cfMeDIP reads
and 80–85% of input control reads remained for DMR analysis (Supplementary Figure 2D–E). A majority
of cfMeDIP-seq sequence reads aligned within gene bodies (major transcript starting from transcriptional start
site [TSS] to transcription termination site) and intergenic regions, as well as CpG islands (CGIs), CGI shores
and TSS/promoter regions (TSS ± 1.5 Kb), together representing the entire genome (Supplementary Figure
2F). As expected, enrichment of methylated cfDNA in the MeDIP fraction over input control fraction was
observed, especially within CpG rich regions. Similar distribution of regions was observed between enzalutamide
and abiraterone treated patients (Supplementary Figure 2G–H).

Intrapatient differential methylation analysis
To identify treatment-related DMRs, we developed a DMR calling strategy for intrapatient analysis termed ‘cfDNA
DMRHunter’ (see Supplementary methods & Supplementary Figure 3). As location-specific cfDNA recovery
sensitivity is unknown a priori, we used input control libraries to ensure uniform cfDNA read coverage across
the whole genome. DMRHunter also uses the input controls to remove alignment artifacts from analysis. After
filtering low quality and PCR duplicated reads, DMRHunter builds a background model and identifies differentially
methylated CpGs (DMCs) across the genome. Adjacent DMCs with the same differential methylation state (UP
or DOWN) were merged to identify DMRs with stringent z-score (>1.5), average read count (≥10) and false
discovery rate (0.01) cut-offs. There were a large number of DMRs across all comparisons and treatments, ranging
from 93,000 to 154,000 DMRs (Figure 3A), with no significant difference in median number of DMRs between
comparisons and treatment (Figure 3B–C). The overall median DMR size was 74 bp, ranging from 2 bp (single
CpG sites) up to 4163 bp.

We next examined the directionality of these changes across comparisons. Conventionally, hypermethylation or
hypomethylation is the typical terminology for methylation changes. However, for cfDNA, it is unclear whether
these changes reflect a gain/loss of methylated CpGs at these specific genomic sites or changes in DNA fragment
abundance, reflecting an altered cellular abundance contributing to the cfDNA pool. For our analysis we opted to
define these DMRs as gains (UP) or loss (DOWN) in methylated fragments. There was no significant difference in
the overall proportion of regions with increased or decreased methylation in all visit comparisons (Figures 3D–F).
The majority of DMRs were found within gene bodies (protein coding and pseudogenes) and intergenic regions
(Figure 3G). DMRs near/within TSS/promoters and CGI, as well as noncoding RNA (ncRNA), were found, but
with lower abundance. We chose to focus on DMRs within promoter and gene body regions, as CpG methylation
changes in these locations are known to be associated with gene expression changes [44].
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Figure 3. Summary of intrapatient differentially methylated region analysis. (A) The total number of DMRs for all patients, visit
comparisons and treatments. (B) Boxplot summarizing median, first and third quartile of all comparison DMRs. Whiskers represent the
highest and lowest number of DMRs. (C) DMR totals were further stratified by treatment type. Boxplots illustrate percentage of DMRs
that increased or decreased in methylation in (D) B versus A, (E) C versus B and (F) C versus A. (G) The overall proportion of DMRs that
were identified near/within CGI, shore, TSS/promoter, ncRNA, intergenic and gene body regions is shown for all visit comparisons (in
order of B vs A, C vs B and C vs A). (H) Venn diagrams showing the overlap of protein coding genes with DMRs near their promoters is
shown for all visit comparisons and between enzalutamide- and abiraterone-treated patients. (I) Similarly, the overlap of protein coding
regions with DMRs within gene bodies is shown.
CGI: CpG island; DMR: Differentially methylated region; ncRNA: Noncoding RNA; TSS: Transcriptional start site.

Methylation changes within promoter & gene body regions
The majority of DMRs within promoters (TSS ± 1.5 Kb) were associated with protein coding genes, followed by
long ncRNA, pseudogenes (Pseudo) and short ncRNA regions (Supplementary Figure 4A). We observed minimal
overlap among promoters of different gene/ncRNA categories and overall distribution of DMRs in these regions
did not vary between patients and visits (Supplementary Figure 4B). We focused on protein coding genes with at
least one promoter DMR. Analyzing recurrence of these genes, we found that many of these genes were found
in less than five patients for each comparison (Supplementary Figure 4C–E). We examined the most common
protein coding genes (with DMRs in ≥5 patients) and found many genes overlapping across visit comparisons,
with the majority shared between abiraterone and enzalutamide groups (Figure 3H). The most common genes
showing either increases or decreases in promoter methylation are in Supplementary Figure 4F, with certain genes
implicated in PCa or other cancers. For instance, PYCR1, which is involved in proline biosynthesis and can promote
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tumor cell growth [45], often demonstrated gain of methylation at visit C. Pathway enrichment analysis of promoter
DMRs (Supplementary Figures 5 & 6) showed that cancer-related pathways such as Wnt and PI3K signaling were
observed, with neuronal pathways being the most frequent. Several promoter associated DMRs were only found
among enzalutamide-treated patients (Figure 3H and Supplementary Table 2). The most frequently differentially
methylated promoter region (6–7 patients, 20 comparisons) within the enzalutamide cohort was FGFR1, which is
overexpressed in PCa and implicated in metastasis [46].

We also examined the distribution of DMRs within gene bodies/known transcripts. The majority of these DMRs
were associated with protein coding gene bodies across (Supplementary Figure 7A–B). In contrast to promoter
DMRs, many genes with body DMRs were shared across patients (Supplementary Figure 7C–E). Similarly, we
focused on commonly altered gene bodies and found extensive overlap between visit comparisons and treatments
(Figure 3I). We further examined net methylation change across these genes by scoring the ratio of increased to
decreased methylation within each gene body, excluding genes that had no net change (i.e., equal number of UP
and DOWN trends). We found 91 genes that were commonly altered across all comparisons (Supplementary
Figure 7F). In most cases, regardless of visit comparison, the methylation pattern for these genes clustered closely
for the same patients. One such group of genes with increases in methylation at Visit C included NFATC1, which
can promote tumorigenesis [47] and a histone deacetylase, HDAC4. While several enzalutamide-specific genes were
found (Supplementary Table 3), common pathways including several differentiation-related and neuronal pathways
were found among gene body-associated DMRs (Supplementary Figures 8 & 9).

Overall, examining the most frequently altered promoters or gene bodies revealed a few cancer-related genes,
but changes across all visit comparisons were variable. We assessed the overall promoter methylation status of
genes that have been established as differentially methylated in PCa (Figure 4A), including GSTP1, TBX15, AOX1
and members of the HOX family of transcription factors [34]. Among the most common differentially methylated
gene promoters were genes involved in tumorigenic processes, such as RUNX3, RGS12 and FBP1, with several
differentially expressed in NE-CRPC [28], including the neuronal transcription factor PHOX2A [48] and a regulator
of apoptosis, CTBP2 [49]. DMRs in genes associated with diagnosis and prognosis could reflect tumor cell response
to treatments. While differential promoter methylation events in the well-established PCa-specific hypermethylated
gene, GSTP1, were infrequent (Figure 4B), decreased gene body methylation coinciding with treatment response
(i.e., PSA reduction) was shown in some patients (i.e., P3). Similar methylation signals were also observed in the
PCa cell line LNCaP [50]. In addition, changes in TBX15 methylation (first intron) were associated with response
to treatment (i.e., PSA) in certain patients (Figure 4C). While promising, there were no consistent DMRs in these
genes that could classify patients by androgen-targeting treatment response. To further refine potential treatment
associated methylation changes, CpG sites within the genome that experienced fluctuations in methylation levels
across all visits were next explored.

Common CpG sites with differential methylation across treatment visits
To find potential ‘treatment sensitive’ CpG sites in the genome, we next examined DMC sites among patients that
completed all study visits, specifically CpG sites that fluctuated in ≥2 visit comparisons. DMCs were analyzed as
DMR size for similar genomic regions varied within and across patients. We stratified the proportion of DMCs that
were uniquely found in single visit comparisons and those shared across all visits (Figure 5A). We identified DMCs
present in two or more visit comparisons for each patient (scenarios 7–14) and associated them with gene promoters
and bodies. Analysis of gene promoters containing DMCs revealed minimal overlap among patients, with P4, P31,
P38 and P3 showing the highest overlap of eight shared genes: NPBWR1, ZSCAN12, PCDHGA11, PHOX2A,
TBX10, TEX28, TKTL1 and TSPAN32 (Supplementary Figure 10A). In contrast, we observed a high degree of
overlap among patients when looking at DMCs within gene bodies, with the exception of P3 (Supplementary
Figure 10B). Interestingly, we also noted a positive correlation between the proportion of DMCs shared across all
visits and TTP (Figure 5A).

We examined three major combined scenarios observed among 14 total: increase/decrease in methylation in
visit C versus B and A (scenarios 7 and 8) (Figure 5A); increase/decrease in B and C versus A (scenarios 9 and 10);
those that increase /decrease in B versus A and then return to same levels in C (13 and 14). The proportion of
these three combined scenarios was correlated with TTP and we found that those patients with more DMCs that
increased/decreased at visit B and were maintained at visit C (scenarios 9 and 10) had a longer TTP (Figure 5B).
Among the genes with CpG sites within these scenarios, B3GNTL1, FAM19A5, INPP5A, MAD1L1, MCF2L,
MYT1L and PRDM16 were found in all patients examined. This included a neurodevelopment-related transcription
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factor, MYT1L [51] and potential regulator of apoptosis in prostate cancer, PRDM16 [52]. Although scenarios 7 and
8 did not correlate with TTP, those patients with a higher proportion of scenarios 13 and 14 had a possible trend
toward faster TTP (Supplementary Figure 10C–D, p = 0.05). This suggests that genome-wide cfDNA methylation
dynamics can reflect response to treatment in mCRPC patients. Importantly, changes in methylation levels of these
specific regions/genes could potentially be used as a monitoring tool during androgen-targeting treatment.

NE-CRPC-related cfDNA DMRs
Thus far, fluctuations in DMRs were analyzed for all cfDNA signals, which could include tumor and non-tumor
derived DNA. As many of the DMRs were associated with genes implicated in several neuronal pathways and
differentiation, we integrated cfDNA DMRs with those identified from biopsy samples from NE-CRPC versus
adenocarcinoma-CRPC in an independent mCRPC patient series [28]. While this published dataset utilized reduced
representation bisulfite sequencing, which primarily covers CpG rich regions (i.e., CGIs), several of these tissue
DMCs were found within cfDNA DMRs (29,355 CpG sites out of 84,930 in NE-CRPC). In order to assess
whether changes in these regions at earlier time points are associated with overall response to androgen-targeting
agents, we examined the overlap between DMRs from the A versus B comparison and NE-associated DMCs. As
P36 progressed prior to visit B (Figure 2D), we included this patient in the analysis (examining A vs C). In this
analysis, we examined the changes in methylation from the perspective of visit A. That is, increased methylation in
visit A versus B/C (UP in A) or decreased methylation in visit A (DOWN in A). We proposed that the abundance
of methylated cfDNA fragments from certain regions may reflect key genes/regions to monitor prior to initiating
therapy. The overall proportion of these DMRs that were increased or decreased in methylation at A versus B (or
C for ID 36) varied across the patients (Figure 6A). Interestingly, we noted that these DMRs (A vs B) appeared
to be related to TTP. We examined the ratio of DMRs containing NE-CRPC associated CpG sites with more
methylated fragments in Visit A to those with less methylation. In order to further delineate key regions, we applied
various false discovery rate thresholds to these DMRs to examine the effect on correlation with TTP (Figure 6B).
We found an optimal set of regions that were negatively correlated with TTP: that is, the more methylated cfDNA
fragments containing these NE-CRPC associated CpGs, the faster/shorter the TTP (Figure 6C). In a follow-up
study analyzing matched biopsy and plasma methylation signals from five adenocarcinoma-CRPC and six NE-
CRPC patients, several PCa-related and neuroendocrine-related methylated regions were found in cfDNA [40]. We
also integrated our A versus B DMRs with this dataset and found similar correlation with TTP (Spearman R = -0.56,
p = 0.024). To determine whether the amount of NE-CRPC-related methylation patterns at visit A was associated
with a faster TTP, we performed receiver operating characteristic analysis for various TTP cut-offs (ranging from
≤20 to 35 weeks). We found that an increased ratio of NE-CRPC DMRs UP in visit A can stratify patients that
progressed as early as 25 weeks (area under the curve: 0.927, CI: 0.773–1) (Figure 6D). These findings were specific
to A versus B DMRs that overlapped known NE-CRPC tissue derived differentially methylated regions. When we
examined all A versus B DMRs, without applying this filter, the association with TTP was significantly weaker
(Spearman R = -0.44, p = 0.08). Overall, we confirm the detection of NE-CRPC-related methylation signatures
in cfDNA, but also show for the first time that these sites may serve as potential predictive markers of resistance to
androgen-targeting agents.

Discussion
In this study, we showed that methylome analysis of the cfDNA from mCRPC patients can capture treatment-
related epigenetic alterations, with or without integration with tissue derived methylation data. We found changes
in well-established PCa methylation markers associated with response to treatment. Importantly, we demonstrated
that cfDNA contains NE-CRPC-related methylation signals, which have the potential to be utilized as predictive
markers of treatment response. Despite the modest sample size, these findings were not cohort specific as another
recent independent study demonstrated detection of NE-CRPC tissue methylation signals in matched plasma
samples [40]. Methylation of several oncogenic driving pathways were detected in cfDNA across time points,
suggesting that methylome analysis of patients’ liquid biopsies can serve as a monitoring tool during treatment, as
well as highlighting potential targets for future therapies.

A key advantage of liquid biopsy-based versus tissue-biopsy approaches is the ability to capture tumor hetero-
geneity. To date, much focus has been placed on genomic alterations, which can help identify AR mutations related
to resistance to abiraterone/enzalutamide [31,32]. However, few studies have highlighted that cfDNA methylation
markers may help further stratify patients [36,37]. In a recent study of 600 mCRPC patients receiving docetaxel,

10.2217/epi-2020-0173 Epigenomics (Epub ahead of print) future science group



cfDNA methylome in advanced prostate cancer Research Article

0

25

50

75

%
 o

f 
D

M
R

S
 w

it
h

 N
E

-a
ss

o
ci

at
ed

 C
p

G
s

P7

100

P2 P6 P38 P8 P26 P12 P3 P9 P31 P36 P1 P15 P28 P37 P4

TTP 114 137 45 38 78 37 19 58 78 53 7 83 81 20 24 21

0.2

0.4

0.6

0.8

Specificity

S
en

si
ti

vi
ty

1.0 0.0

1.0

0.0

0.8 0.6 0.4 0.2

1

2

TTP (weeks)

U
P

 A
 v

s 
B

/D
N

 A
 v

s 
B

 r
at

io

10050

P36

P12

P28 P37

P26

P38

P6

P31
P3 P15

P9
P1

P8

P7

P2

P4 R=-0.59, p = 0.017

1.0

1.2

1.4

1.6

-Log10 (DMR FDR) cut-off

-L
o

g
10

 (
sp

ea
rm

an
 p

-v
al

u
e)

2.0 2.5 3.0 4.0

1.8

0.4

0.5

0.6

S
p

ea
rm

an
 R

0.7

3.5

DN in visit A vs B UP in visit A vs B ABI ENZA

-Log
10

 (spearman p-value)

Spearman R

Figure 6. Neuroendocrine-castration-resistant prostate cancer-related differentially methylated regions in cell-free DNA. (A) For each
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increased methylated GSTP1 at baseline was associated with longer overall survival and loss of methylation after two
cycles of treatment corresponded with longer time to PSA progression [53]. Furthermore, patients that exhibited loss
in methylated GSTP1 after two cycles of treatment had better overall survival. In this study, we observed some cases
in which there were losses of GSTP1 methylation in certain treatment responsive patients (PSA reduction). We also
examined other tissue-based methylation markers (promoter and gene body), including TBX15 and RUNX3 [34],
and similar heterogeneity among patients was observed. This in part could be explained by differing mechanisms
between docetaxel and androgen-targeting agents. Due to intra- and intertumor heterogeneity [54,55] androgen-
targeting agents may not target all androgen-independent tumor cells, which could also harbor these methylation
markers. Furthermore, most well-studied methylation markers were derived from earlier stages of PCa, whereas
further epigenomic instability is known to occur with the mCRPC state [56].

Through sequential analysis using a genome-wide approach, we highlighted progressive changes in genes involved
in tumorigenic processes in PCa and other cancers. Commonly altered genes in the promoter region included PYCR1
and SHARPIN, which are known to be upregulated in PCa tissue and involved in processes such as proliferation
and angiogenesis [57]. Gene body methylation changes were observed in genes that regulate various tumorigenic
processes, including NFATC1 [47], PRDM16 [52] and OPCML [58]. Pathway analysis also further highlighted key
mechanisms that have been established in prostate tumor tissue studies, including the wnt pathway [16]. However,
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the methylation patterns among these genes demonstrated extensive variability across patients and visits, especially
when examining individual visit comparisons.

In order to further delineate key regions, we further assessed common CpG sites that changed throughout treat-
ment. These changes appeared to reflect dynamics of treatment response. For instance, patients that demonstrated
CpG changes (up or down) in visit B and sustained these patterns by visit C appeared to have a longer TTP. In con-
trast, there was a trend toward shorter TTP among patients that did not demonstrate sustained methylation changes.
Associated genes included NPBWR1, which was shown to be upregulated in basal cells from prostate tissue [59]

and neuronal transcription factor, MYT1L [51]. These findings highlight that genome-wide cfDNA methylation
analysis is able to capture tumor dynamics and may further have additive potential to mutation analysis.

We also observed that many of the differentially methylated genes overlapped between enzalutamide- and
abiraterone-treated patients. Although there are ongoing studies to compare the efficacy of either treatment [60],
the current consensus is that both perform similarly and deciding between treatments in a patient-specific manner
remains an ongoing challenge. We identified sets of genes altered in the promoter and gene body locations, including
one large set among enzalutamide treated patients. However, there were fewer abiraterone-treated patients in this
study, which may have limited heterogeneity, as seen in the enzalutamide cohort. Further studies are needed to
examine if the methylome is different between these treatment types. Overall, similar pathways were altered between
the treatments, with neuronal pathways being the most prominent.

Given the prominence neuronal-related genes/pathways, we examined the utility of these methylation changes
in helping to predict treatment outcome, especially in identifying NE-CRPC. With our study design of sequential
sampling, we could detect these methylation trends at earlier time points, demonstrating that the proportion of
neuroendocrine-like DMRs correlated with TTP. In particular, the higher the proportion of certain DMRs with
these NE-CRPC associated methylation patterns, the faster the time to clinical progression. Although we are
currently limited to a single cohort, we now have a set of candidate regions that could be validated in additional
cohorts. While we did not measure markers of NE disease (i.e., chromogranin A), increased methylation of NE-
CRPC affected regions at Visit A could potentially serve as predictive markers of response to androgen-targeting
agents. In addition, there are known genomic markers of the NE-CRPC state, including increased loss of RB1 and
mutation of the TP53 gene [28]. While these mutations are not unique to NE-CRPC, integration with methylation
signatures could further enhance stratification of patients with highly aggressive disease.

Conclusion
Our genome-wide sequencing protocol and analysis strategy has demonstrated the utility of intrapatient monitoring
of cfDNA methylation. If changes in the methylome during treatment were sustained until clinical progression,
these patients appeared to have a better prognosis with androgen-targeting treatment. Interestingly, methylation
patterns associated with a highly aggressive form of the disease may serve as predictive markers. Further independent
validation of these markers is needed to assess this predictive potential.

Future perspective
Liquid biopsy based biomarkers will be playing a major role in how we treat patients with highly aggressive prostate
cancer. Many studies focus primarily on genomic alterations associated with treatment resistance, but epigenomic
markers could further explain the heterogeneous mechanisms that contribute to disease progression. Ultimately, we
anticipate that a combination of genomic and epigenomic markers will help facilitate optimal therapy decisions.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/full/
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Summary points

• We performed genome-wide methylation analysis of sequentially collected cell-free DNA samples from
metastatic castration-resistant prostate cancer patients receiving androgen-targeting therapy.

• The DMRHunter pipeline was developed to identify differentially methylation regions between study visits for
each patient.

• Changes in promoter and gene body methylation was identified in key novel genes as well as previously
established genes associated with tumorigenesis and the highly aggressive form of the disease,
neuroendocrine-CRPC.

• Patients that were able to sustain methylation changes throughout treatment tended to present a longer time to
clinical progression, suggesting that fluctuations in these CpG sites could help monitor response to treatment.

• Genes that frequently showed altered DNA methylation in patients cell-free DNA during treatment are involved
in key tumorigenic and developmental process.

• Elevated levels of neuroendocrine-CRPC-related methylation signals in cfDNA could serve potential predictive
markers of resistance to androgen-targeting therapies.

• These findings could help with improving the clinical management of mCRPC using a minimally invasive
approach.

• Future studies will examine the predictive potential of these markers in identifying treatment-resistant patients.
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