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Abstract

Background: Identification of cell type subpopulations from complex cell
mixtures using single-cell RNA-sequencing (scRNA-seq) data includes
automated steps from normalization to cell clustering. However, assigning
cell type labels to cell clusters is often conducted manually, resulting in
limited documentation, low reproducibility and uncontrolled vocabularies.
This is partially due to the scarcity of reference cell type signatures and
because some methods support limited cell type signatures.

Methods: In this study, we benchmarked five methods representing
first-generation enrichment analysis (ORA), second-generation approaches
(GSEA and GSVA), machine learning tools (CIBERSORT) and
network-based neighbor voting (METANEIGHBOR), for the task of
assigning cell type labels to cell clusters from scRNA-seq data. We used
five scRNA-seq datasets: human liver, 11 Tabula Muris mouse tissues, two
human peripheral blood mononuclear cell datasets, and mouse retinal
neurons, for which reference cell type signatures were available. The
datasets span Drop-seq, 10X Chromium and Seq-Well technologies and
range in size from ~3,700 to ~68,000 cells.

Results: Our results show that, in general, all five methods perform well in
the task as evaluated by receiver operating characteristic curve analysis
(average area under the curve (AUC) = 0.91, sd = 0.06), whereas
precision-recall analyses show a wide variation depending on the method
and dataset (average AUC = 0.53, sd = 0.24). We observed an influence of
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the number of genes in cell type signatures on performance, with smaller Any reports and responses or comments on the
signatures leading more frequently to incorrect results.

Conclusions: GSVA was the overall top performer and was more robust in
cell type signature subsampling simulations, although different methods
performed well using different datasets. METANEIGHBOR and GSVA were
the fastest methods. CIBERSORT and METANEIGHBOR were more
influenced than the other methods by analyses including only expected cell
types. We provide an extensible framework that can be used to evaluate
other methods and datasets at

https://github.com/jdime/scRNAseq cell cluster labeling.

article can be found at the end of the article.
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(575523 Amendments from Version 1

- We incorporated a new method (MetaNeighbor) into our
evaluation.

- We incorporated two new scRNA-seq datasets (Tabula Muris
and PBMCs measured using Seqg-Well).

- All Figures have changed: a) we clarified the approach we used
to transform each method’s predictions into ranks for the ROC and
PR curve analyses. This includes main text, updated Figure 1G,
and response to Reviewers. b) In our previous version we analyzed
four methods and three datasets. In our new version we evaluated
five methods and eight dataset variants, and we modified the
presentation of the results. Now each Figure 2 to Figure 5
shows all ROC and PR results for each dataset; instead of our
previous version where each figure shown ROC results for all
datasets in one figure and PR results for all datasets in another
figure.

- We added a Figure 6, which has a summary of results and

new results on the influence of the number of genes in cell type
signatures on the performance of methods.

- We added Supplementary Table 1 with the actual values of
Figure 6A-D and Supplementary Table 2 with a comparison of an
alternative signature dataset for the PBMC datasets

- We modified our software code to take prediction outputs in a
simpler format than our previous version. The GitHub and Zenodo
links were updated accordingly.

- The main text has been clarified in several places.

Any further responses from the reviewers can be found at the
end of the article

Introduction

During the last five years a number of single-cell sequencing
technologies have been developed to identify cell subpopula-
tions from complex cell mixtures (Bakken er al., 2017). For
instance, recent advances in single-cell RNA-sequencing
(scRNA-seq) enable the simultaneous measurement of expression
levels of thousands of genes across thousands of individual
cells. The resulting expression matrices of genes by cells are
used to identify cell subpopulations with characteristic gene
expression profiles (i.e. cell types).
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A typical computational pipeline to process scRNA-seq data
involves: i) quality control of sequencing reads, ii) mapping
reads against a reference transcriptome, iii) normalization
of mapped reads to correct batch effects and remove
contaminants, iv) data dimensionality reduction with principal
component analysis or other approaches, v) clustering of cells
using the reduced dimensionality representation, vi) detection
of genes differentially expressed between clusters, vii) visu-
alization of cell clusters in t-SNE or similar methods, and
viii) assignment of cell type labels to cell clusters. A number of
computational tools, including Cell Ranger (Zheng er al., 2017a)
and Seurat (Butler er al., 2018), support automation of steps
i to vii (Duo et al., 2018; Freytag et al., 2018; Innes & Bader,
2019). However, assignment of cell type labels to cell clus-
ters is still conducted manually by most researchers. The typical
procedure involves manual inspection of the genes expressed
in a cluster, combined with a detailed literature search to
identify if any of those genes are known gene expression mark-
ers for cell types of interest. This manual approach has several
caveats, including limited documentation and low reproduc-
ibility of cell type gene marker selection, use of uncontrolled
and non-standard vocabularies for cell type labels, and it is
time-consuming. For these reasons, computational tools that
enable researchers to systematically, reproducibly and quickly
assign cell type labels to cell clusters derived from scRNA-seq
experiments are needed.

In this study we analysed each of five scRNA-seq datasets
with five computational methods that can be used to assign
cell type labels to cell clusters based on known gene expres-
sion marker lists. The datasets include human liver cells
(MacParland er al., 2018); mouse retinal neurons (Shekhar
et al., 2016b); the Tabula Muris mouse cell atlas data (Tabula
Muris Consortium et al., 2018a), which encompasses 20 tis-
sues of which we used 11 for which cell type signatures were
available (Tabula Muris Consortium, 2018b); and human periph-
eral blood mononuclear cells (PBMCs) mapped using two
technologies: 10X Chromium (Zheng er al., 2017a) and Seq-Well
(Gierahn et al., 2017a) (Table 1). We chose these five

Table 1. scRNA-seq datasets used in this study.

Dataset Description of scRNA-seq
Name dataset genes in
E
xy
Liver 10X Chromium sample from liver 20,007
cells from five human donors
Retinal neurons  Drop-seq sample from retinal bipolar 13,166
neurons from healthy mice
Tabula Muris 10X Chromium samples from 11 out 18,300
of 20 mouse tissues with cell type
signatures, or 6 out of those 11, with
signatures for three or more cell types
PBMCs-10X 10X Chromium sample from 17,786
peripheral blood mononuclear
cells from a human donor
PBMCs-SeqWell Seqg-Well sample from peripheral 6,713

blood mononuclear cells from human

Number of Number

Number Number of Reference

of cells of cell
cell type
clusters signatures
8,444 20 10 (MacParland et al., 2018)
27,499 18 15 (Shekhar et al., 2016b)
55,505 130 53 (Tabula Muris Consortium et al.,
2018a)
68,579 7 22 0r 6 (Zheng et al., 2017a)
3,693 6 22 0r6 (Gierahn et al., 2017a)
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datasets primarily because they provided expert curated known
cell type marker gene lists and cell cluster annotations that we
could use as gold standards. The five methods analysed were:
CIBERSORT (Newman et al., 2015b), GSEA (Subramanian
et al., 2005), GSVA (Hinzelmann ef al., 2013), METANEIGH-
BOR (Crow er al., 2018) and ORA (Fisher, 1935; Goeman
& Biithlmann, 2007) (Table 2). We chose these five methods
to represent different categories of algorithms, ranging from
first-generation  enrichment analysis (ORA) to second-
generation approaches (GSEA and GSVA), machine learning
tools (CIBERSORT) and network-based neighbor voting
approaches (METANEIGHBOR). Although ORA and GSEA
were not originally developed to process RNA-seq data, they have
been extensively used in transcriptomic studies for gene set
enrichment analyses. GSVA was developed to analyse micro-
array and bulk RNA-seq data. CIBERSORT was developed to
estimate abundances of cell types in mixed cell populations
from bulk RNA-seq data, and METANEIGHBOR was devel-
oped to characterize replicability of scRNA-seq samples.
We adapted all five methods to assign cell type labels to cell
clusters from scRNA-seq data based on known sets of cell type
marker genes. We evaluated these methods using two types
of inputs: a matrix with the average expression of each gene x
from all the cells in each cell cluster y (Ex\‘) from scRNA-seq
measurements, which we assume corresponds to the profile
of a cell type or state (Figure 1A), and known cell type signa-
tures, represented as gene sets (Figure 1B) or continuous gene
expression profiles (Figure 1C).

Methods

Generation of cell cluster average gene expression
matrices (£, ) )

For all datasets, the Ematrix was obtained from cell clus-
ter scRNA-seq measurements with AverageExpression(use.raw
= T) from Seurat v2 (Butler er al., 2018). For the liver dataset
(MacParland er al., 2018) (NCBI GEO: GSEI115469) we
followed the authors’ reported cell cluster assignments and
applied AverageExpression() to compute the average expres-
sion profile for all cells in each cluster. For the retinal neuron
dataset (Shekhar er al., 2016b) (NCBI GEO: GSE81905) the
gene expression matrix and cell cluster assignments were
obtained from (Shekhar er al., 2016a) and processed with
AverageExpression(). For the Tabula Muris dataset (NCBI
GEO: GSE109774), the droplet (10X Genomics) RNA
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measurements were obtained from Figshare (Tabula Muris
Consortium, 2018b). File ‘annotations_droplet.csv’ was used to
obtain tissue and cell cluster information, and AverageExpres-
sion() was applied to clusters from each tissue. ‘Tabula Muris
11’ includes a subset of this data containing the 11 tissues for
which we could map cell type gene expression signatures into cell
clusters (see below), whereas ‘Tabula Muris 6° was a subset of
6 tissues for which the mapped signatures had at least three
cell types per tissue. The list of tissues included can be found
in the corresponding Exy matrices provided as Supplementary
Information (Diaz-Mejia er al., 2019a). For the PBMC-10X
datasets (Zheng er al., 2017a), ‘Fresh 68k PBMCs DonorA’
gene expression matrix files were obtained from 10X
Genomics (Zheng et al., 2017b) (NCBI Sequence Read
Archive: SRX1723926). Normalization, data dimensional-
ity reduction and cell clustering were conducted with Seurat v2
with the following functions: FilterCells(low.thresholds =
200,-Inf, high.thresholds = 0.05,10000); FindClusters(reduction.
type = “pca”, dims.use = 1:10, resolution = 0.4); and
AverageExpression(). For the PBMC-SeqWell datasets
(Gierahn et al., 2017b), the GSM2486333_PBMC.txt file with
read counts was obtained from GEO dataset GSM2486333
(NCBI GEO: GSE92495). Columns with labels ‘Removed_*’
were removed and from the remaining columns, column header
prefixes, like: BCELL*, NK*, CD4%*, etc., were used to clas-
sify cells into clusters, and AverageExpression() was applied
to each cluster.

Collection of cell type gene expression signatures

A gene expression signature is defined as a set of genes char-
acteristically and detectably expressed in a cell type. These
are typically inferred from small-scale experiments manually
identified in the literature, or by comparing the transcrip-
tome of a given cell type against all other available cell type
gene expression profiles, usually from the same experiment.
The liver cell type gene set signatures were manually curated by
us (author S.A.M.) and were originally used to manually anno-
tate cell types in the liver dataset (MacParland er al., 2018).
We provide these gene sets on Zenodo (Diaz-Mejia er al.,
2019a). For the retinal neuron dataset (Shekhar er al., 2016b),
known cell type markers reported by the authors were used as
cell type gene set signatures. For the Tabula Muris dataset, one
of the consortium authors provided us with manually defined
cell type gene set signatures for 11 of the 20 tissues included

Table 2. Cell cluster labeling methods compared in this study.

Acronym Version Name Language Reference

CIBERSORT 1.01 Cell type Identification by Estimating R and Java (Newman et al., 2015b)
Relative Subsets of RNA Transcripts

GSEA 3.0 Gene Set Enrichment Analysis Java (Subramanian et al., 2005)

GSVA 1.30 Gene Set Variation Analysis R (Hanzelmann et al., 2013)

METANEIGHBOR 1.3.1 Meta-analysis via neighbor voting R (Crow et al., 2018)

ORA R(3.5.1) Qver- representation Analysis R (Fisher, 1935; Goeman &

Buhlmann, 2007)
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Figure 1. Schematic of a process to benchmark automated cell type prediction methods. Two inputs are needed by automated cell
type prediction methods (A-C). (A) a matrix with the average expression of each gene x for each cell cluster y( ) (B, C) cell type gene
marker signatures can be provided as either gene sets (lists of gene identifiers, B) or numeric gene expression profiles (C). (D) Gene
sets can be manually compiled from literature and are used for methods like GSEA, GSVA or ORA, whereas gene-expression profiles are
measurements from microarrays, bulk- or single-cell RNA-sequencing (scRNA-seq) experiments and are used by methods like CIBERSORT
and METANEIGHBOR. (E) Automated cell type prediction methods produce a matrix of cell type prediction scores for each cell cluster.
(F) Some authors of scRNA-seq studies assign cell type labels manually to cell clusters using local expertise or orthogonal experiments such
as fluorescence activated cell sorting. These annotations can be used as a gold standard to benchmark automated cell type predictions.
(G) Cell type prediction scores (from E) for cell clusters are concatenated into a single vector and known cell cluster annotations (from F) are
added. The resulting matrix is used to assess the performance of cell type prediction methods by receiver operating characteristic (ROC)
curve and precision-recall (PR) curve analyses varying over the prediction scores for all cell clusters in a dataset (H). (I) Robustness of cell
type prediction methods can be analysed by gradually subsampling gene markers from cell type gene expression signatures (B or C) and
repeating procedures of (D-H) to obtain distributions of the area under the curve (AUC) for ROC (ROC AUC) and PR (PR AUC) curves, which
are shown as violin plots. We hypothesized that some prediction methods are more robust than others to the proportion of gene markers
subsampled from cell type gene expression signatures.
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in the publication. The file is now available in the Tabula Muris
repository (Tabula Muris Consortium, 2018c; Tabula Muris
Consortium, 2019). For the PBMC-10X and PBMC-SeqWell
datasets, we used a blood cell type gene expression profile sig-
nature compiled by the CIBERSORT developers called LM22,
containing 547 genes and 22 cell types (Newman ez al., 2015a).
We also tested an alternative signature designed for RNA
seq data with 17 cell types (Monaco et al., 2019), and it pro-
duced similar results to the LM22 dataset (Supplementary
Table S2), thus we decided to use only the LM22 for our study.
For the PBMC-10X dataset, reference cell type assignments
were obtained from the authors’ fluorescence-activated cell
sorting (FACS)-based assignments (Zheng er al., 2017c). The
PBMC cell clusters we obtained with Seurat were mapped using
cell barcode identifiers against the FACS assignments, and cell
type names were manually matched to the LM22 signature.
For the PBMC-SeqWell datasets (Gierahn er al., 2017a) cell
cluster prefixes from the file GSM2486333_PBMC.txt column
headers were used to manually assign cell types from the LM22
matrix (Newman ef al., 2015a).

CIBERSORT and METANEIGHBOR require as input a cell
type gene expression signature in the form of gene expres-
sion profiles including gene expression scores. For the PBMC
datasets, we used the LM22 signature to evaluate these two
methods in two ways. First, we used the original LM?22
signature (Newman ef al., 2015b) with continuous valued gene
expression measurements, which we called CIBERSORT
‘continuous’ and METANEIGHBOR ‘continuous’. Second,
for each cell type of the LM22 signature, a value of ‘1’ was
assigned to 5% of genes with highest expression values in their
column or a value of ‘0’ otherwise, and we called this approach
CIBERSORT ‘binary” and METANEIGHBOR ‘binary’. The
same 5% of genes was used to create cell type gene set sig-
natures as inputs for GSEA, GSVA and ORA. For the liver
dataset, we transformed the cell type gene set signature into a
binary matrix of genes in rows and cell types in columns for
CIBERSORT ‘binary’ and METANEIGHBOR ‘binary’. To do
this, each gene included in each cell type gene set m was assigned
a value of ‘1’ in the column corresponding to m in the matrix,
whereas other genes absent in m but present in other cell type
gene sets were assigned a value of ‘0’. Similarly, for the retinal
neuron dataset the ‘previously known markers’ for bipolar cell
types provided in Table S2 of Shekhar er al. (2016b) were
transformed into a binary matrix of genes by cell types for
CIBERSORT ‘binary’ and METANEIGHBOR ‘binary’ analy-
ses. For the Tabula Muris datasets, we organized the cell type
gene set signatures of each tissue into a binary matrix of genes
in rows and tissue-cell types in columns for CIBERSORT
‘binary’ and METANEIGHBOR ‘binary’ analyses.

Generation of subsampled cell type gene expression
signatures and area under the curve (AUC) distribution
violin plots

Cell type signature gene sets (Figure 1B) were subsampled
by randomly removing between 10 and ~99% of genes from
each signature in increments of 10%, keeping a minimum of
one gene. Each subsampling of gene sets was organized as a
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binary matrix of genes by cell types for CIBERSORT ‘binary’
and METANEIGHBOR ‘binary’ as indicated above. Cell type
gene expression profile signatures (Figure 1C) were subsampled
in two stages: first we selected the top 5% highest expressed
genes for each cell type, then we replaced the gene expres-
sion value of a random 10 to 100% of those genes from each
cell type, in increments of 10%, by the minimum value of
the cell type column. This resulted in subsampled gene expres-
sion profile signatures with identical size to the original pro-
file signatures, but with values of the top highly expressed
genes randomly replaced by the minimum score of each
cell type. For percentage values between 10 to 100%, 1,000
subsampling replicates were generated for each cell type gene
expression signature, and each replicate was processed as indi-
cated by Figure 1D-I. Violin plots were used to show the
resulting ROC and PR AUC distributions.

Implementation of tested methods and use of enrichment
metrics for ROC and PR analyses

We used five methods to score each cell cluster for each
cell type. Three methods (CIBERSORT, GSVA and META-
NEIGHBOR) generated scores that could be directly used for
ROC and PR curve analyses. For ORA and GSEA, we first
transformed their cell cluster labeling P-values to a -log10 scale,
so that higher values reflected higher scores of a cell cluster
belonging to a given cell type and used these scores for ROC
and PR curve analyses. All prediction scores for each dataset
over all tested cell cluster vs. cell type pairs were concatenated
into a single vector and compared to gold standard cell cluster
annotations (Figure 1G). Varying prediction score thresh-
olds over this vector was used to plot the ROC and PR curves
and obtain AUC values (using R ROCR and precrec libraries).
For each prediction score threshold, all predictions above the
threshold were predicted positives and these were compared to
known cluster annotations to identify true and false positives,
as well as true and false negatives below the score
threshold, for ROC and PR curve analysis. Commands for each
method were: CIBERSORT (v1.01), ‘CIBERSORTjar -M
Mixture -B signature -n 1000’; R library(GSVA) v1.30, R
function gsva(); GSEA v3.0, ‘gsea-3.0.jar GseaPreranked -
nperm 1000’; ORA, R function fisher.test() from R v3.5.1.
For ORA, the universe of genes used was the intersection of
genes present in the cell type gene expression signature and the
vay matrix of each dataset. For METANEIGHBOR we
created a modified version of function MetaNeighborUS()
from the R library(MetaNeighbor) v1.3.1, to obtain cell type
prediction scores. A typical MetaNeighborUS() run uses
scRNA-seq measurements from studies 1 and 2, and its output
is the average ROC AUC for each pair of neighbor ROC
AUC scores across ‘training’ and ‘testing’ datasets. In this
study, we instead used cell clusters from one scRNA-seq data-
set as the ‘testing’ dataset (i.e. study 1) and cell type signatures
as the ‘training’ dataset (i.e. study 2). With the advice of one of
the MetaNeighbor developers, we modified function Meta-
NeighborUS() source code to remove the averaging command
‘celNV <- (cell_NV+t(cell_NV))/2’ and compiled the library
from the modified source. All methods were implemented in
Java, R and Perl (Table 2). The scripts used to run and benchmark
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cell type labeling methods described in this study are available
on GitHub and archived at Zenodo (Diaz-Mejia ef al., 2019b).

Computing time benchmark

We implemented wrapper scripts to execute each of the five
methods tested, including a stopwatch to time the cell type pre-
diction task. Other tasks, such as input and output preparation,
were excluded from computing time values reported in
Figure 6D and Supplementary Table 1. All computing time meas-
urements were made using a 3.1-GHz Intel Core i5 CPU with 2
cores and 16 GB RAM. Robustness analyses were performed
on the Niagara supercomputer at the SciNet HPC Consortium
(Ponce et al., 2019).

Results

Benchmark of cell cluster labeling methods

We benchmarked the performance and computing time of
five cell type labeling methods: CIBERSORT, GSVA, GSEA,
METANEIGHBOR and ORA (Table 2), using average gene
expression profiles of scRNA-seq cell clusters and known
cell type gene expression signatures. We used five scRNA-
seq datasets: liver (MacParland er al., 2018), retinal neurons
(Shekhar er al., 2016b), the Tabula Muris mouse cell atlas
(Tabula Muris Consortium et al., 2018a), and two PBMC data-
sets obtained with 10X Chromium (Zheng er al., 2017a) and
Seq-Well technologies (Gierahn er al., 2017a) (Table 1). Each
method used two inputs: an EXV matrix with the average gene
expression for each cell cluster (Figure 1A) and a cell type gene
expression signature, represented as either a gene set (dis-
crete set of genes) or a gene expression profile (vector of
continuous gene expression values). For three of the five
methods tested (GSVA, GSEA and ORA) we used cell type sig-
natures in the form of gene sets (Figure 1B), and for CIBERSORT
and METANEIGHBOR we used two cell type signature
representation approaches: binary and continuous. In one
approach we transformed gene sets into binarized matrices
and called the method variants CIBERSORT ‘binary’ and
METANEIGHBOR ‘binary’. In the second approach, we used
available gene expression profiles (Figure 1C) and called the
method variants CIBERSORT ‘continuous’ and METANEIGHBOR
‘continuous’.

Each method produced a matrix of cell type prediction scores
(Figure 1D, E) which was compared to manually annotated
cell type gold standards (Figure 1F, G) to conduct receiver
operating characteristic (ROC) and precision-recall (PR) curve
analyses (Figure 1H). The robustness of each method was
assessed by randomly subsampling 10% to 100% of the genes
from cell type gene expression signatures and repeating the
cell type prediction, and ROC and PR curve analyses for each
subsample (Figure 1I). In the following sections we show ROC
and PR curve analyses side by side with their robustness
analyses (Figure 2 to Figure 5) and a summary of results in
Figure 6.

ROC curve analysis

In general, we observed that all five methods showed high ROC
AUCs for assigning cell types to all eight analysed scRNA-
seq dataset variants (average ROC AUC over 40 method-data
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combinations = 091, s.d. = 0.06). The liver and retinal neu-
ron datasets showed average ROC AUC = 0.96 and 0.93,
respectively (Figure 2A, C). The Tabula Muris dataset was
analysed in two ways. In the first way, which we call ‘Tabula
Muris 11°, we used data from 11 tissues for which we could find
cell type signatures (Tabula Muris Consortium, 2018b), and used
their signatures collectively as a gene set database input for a
single task to predict cell types across all Tabula Muris tis-
sues (average ROC AUC = 0.88, Figure 3A). In the second way,
which we call ‘Tabula Muris 6’, we restricted predictions to
six tissues with three or more cell type signatures per tissue,
using tissue-specific cell type signature gene set databases, and
merged the prediction scores from the six tissues to evalu-
ate performance over all those tissues (average ROC
AUC = 0.97, Figure 3C). Since we observed higher ROC
AUCs using ‘Tabula Muris 6’ than using ‘Tabula Muris 11
(Figure 3C wvs. 3A), we also analysed the PBMC datasets
similarly. First, we used all 22 cell type signatures from the
LM22 (Newman et al., 2015b) to predict cell types using PBMC
cell clusters from 10X and Seq-Well. We call these
approaches ‘PBMCs-22-10X’ and ‘PBMCs-22-SeqWell’ and
obtained average ROC AUCs of 0.85 and 0.86, respectively
(Figure 4A, Figure 5A). Secondly, we restricted the analyses to
the six cell types from the LM?22 matrix that mapped to
PBMC cell clusters (see Methods). We call these approaches
‘PBMCs-6-10X" and ‘PBMCs-6-SeqWell’ and obtained aver-
age ROC AUCs of 0.89 and 0.96, respectively (Figure 4C,
Figure 5C).

In terms of ROC curve analyses, GSEA and GSVA were the
top performers (average ROC AUCs = 0.93 each), closely
followed by the two approaches of METANEIGHBOR and ORA
(average ROC AUCs = 091 each), then CIBERSORT ‘binary’
(average ROC AUC = 0.88) and CIBERSORT ‘continuous’
(average ROC AUC = 0.86). Notably, the ‘binary’ approaches
of CIBERSORT and METANEIGHBOR produced some of
the highest performance among all tested methods for the liver
(CIBERSORT ‘binary” ROC AUC = 1, Figure 2A), retinal
neuron (CIBERSORT ‘binary’ and METANEIGHBOR ‘binary’
ROC AUCs = 0.93 each, Figure 2C) and Tabula Muris data-
sets (METANEIGHBOR ‘binary” ROC AUC = 0.92 using 11
tissues, and 0.99 using six tissues). In fact, the CIBERSORT
and METANEIGHBOR ‘binary’ performances were compara-
ble to those using the original LM22 matrix with continuous
values, which we called CIBERSORT ‘continuous’ and META-
NEIGHBOR ‘continuous’ (Figure 6A). A summary of these
observations is provided in Figure 6A and Supplementary
Table 1.

The analysis of ROC AUC robustness showed that in general,
performance decayed as a function of removing genes from cell
type gene signatures. For the liver dataset, GSVA and GSEA tol-
erated removal of up to 60% of genes from the liver signatures
to maintain ROC AUCs > 0.8, whereas CIBERSORT ‘binary’,
METANEIGHBOR ‘binary’ and ORA tolerated removal of up
to 50% of the genes at the same ROC AUC cutoff (Figure 2E).
For the retinal neuron dataset, GSVA, METANEIGHBOR
‘binary’ and ORA tolerated removal of up to 50% of the genes
from the signature to maintain ROC AUCs = 0.8, whereas GSEA
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Figure 2. Performance and robustness analysis of cell type prediction methods using liver and retinal neuron scRNA-seq data.
Receiver operating characteristic (ROC) and precision-recall (PR) curve analyses of five automated cell type prediction methods:
CIBERSORT (CIBER(b)), GSEA, GSVA, METANEIGHBOR (META(b)) and ORA (Table 2) using a human liver scRNA-seq dataset to compute
ROC curve analysis (A) and PR curve analysis (B); using a mouse retinal neuron scRNA-seq dataset to compute ROC curve analysis
(C) and PR curve analysis (D). The cell type gene expression signatures used for ROC and PR curve analyses for panels A to D were
randomly subsampled 1,000 times, keeping 10 to 100% of genes from the original signatures each time. Automated cell type prediction was
repeated for each subsample, and violin plots representing the distribution of resulting ROC AUCs and PR AUCs are shown for analyses using
human liver cells to compute ROC AUC robustness (E) and PR AUC robustness (F), and using mouse retinal neurons to compute ROC AUC

robustness (G) and PR AUC robustness (H).

and CIBERSORT ‘binary’ tolerated removal of 30% and 20%,
respectively (Figure 2G). Analysis of the Tabula Muris data-
set showed that all methods were more stable to removal of
genes from these signatures compared with observations for
the liver, retinal neuron and PBMC datasets. The ‘Tabula Muris
6’ approach resulted in ROC AUCs slightly more robust than
those using ‘Tabula Muris 11’ (Figure 3E, G). Analysis of the
PBMC datasets showed that GSVA was the method that toler-
ated the highest removal of genes from signatures (of up to 90%)

to maintain ROC AUCs > 0.8 (Figures 4E, 4G, Figure 5E, 5G).
In contrast, METANEIGHBOR ‘continuous’ was robust using
the 10X PBMC dataset (Figure 4E, G) but decayed mark-
edly using the Seq-Well dataset (Figure 5E, G). At the same
ROC AUC cutoff = 0.8, ORA tolerated removal of up to
50% of genes and GSEA removal of 30-40% of genes for
all PBMC datasets (Figure 4E, 4G, Figure 5E, 5G). The
two versions of CIBERSORT showed similar behaviours to
each other, tolerating removal of up to 60% of genes in the
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Figure 3. Performance and robustness analysis of cell type prediction methods using Tabula Muris scRNA-seq data. The same
procedure as described in Figure 2 for ROC and PR AUCs of the liver and retinal neuron datasets was used here for the Tabula Muris dataset.
Please see Figure 2 legend for details. The Tabula Muris dataset was analysed in two ways. In the first way (‘Tabula Muris 11’, panels A,
B, E and F), 11 tissues whose cell type signatures and cell clusters could be mapped against each other were analysed using all cell type
signatures as a single input gene set database for cell type prediction methods. In the second way (‘Tabula Muris 6’, panels C, D, G and
H), the analysis was restricted to six tissues with three or more cell type signatures. In this strategy, each tissue’s cell types were predicted
separately from other tissues and the results were combined afterwards to evaluate the ROC, PR and robustness of each of five automated
cell type prediction methods: CIBERSORT (CIBER(b)), GSEA, GSVA, METANEIGHBOR (META(b)) and ORA.

‘PBMC-6-SeqWell’ approach (Figure 5G), but decayed quickly
after removing only 10% of genes in the rest of the PBMC
approaches (Figures 4E, 4G, Figure 5E).

Precision-Recall curve analysis

When benchmarking the five methods compared in this study,
we classified each cell cluster positively into a single-cell type
and negatively into the remaining cell types. This produced a
skewed distribution with few positive predictions and many nega-
tive predictions. To address this imbalance, we used PR curve
analyses in addition to ROC curve analyses. In general, the

PR AUCs were smaller and more diverse (average PR
AUC = 0.53, s.d. = 0.24) than the ROC AUCs (average
ROC AUC = 091, s.d. = 0.06) (Figure 2 to Figure 5, panels A
vs. B, and C vs. D). However, when we restricted signatures to
keep only cell types expected to match the input cell clusters we
found that ROC AUCs increased marginally (average 1.1 times),
whereas the PR AUCs increased substantially (average 3.2 times).
For instance, the average PR AUC using ‘Tabula Muris 6’
was higher than that using ‘Tabula Muris 11° (0.73 vs. 0.23,
Figure 3D vs. 3B). Similarly, the average PR AUC using
‘PBMC-6-10X" was higher than that using ‘PBMC-22-10X’
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Figure 4. Performance and robustness analysis of cell type prediction methods using 10X PBMCs scRNA-seq data. The same procedure
as described in Figure 2 for ROC and PR AUCs of the liver and retinal neuron datasets was used here for the PBMCs dataset measured with
the 10X Chromium technology. Please see Figure 2 legend for details. Seven cell clusters from the 10X scRNA-seq measurements could be
mapped vs. six out of 22 cell types of the PBMC LM22 matrix signatures. This dataset was analysed in two ways. In the first way (‘PBMCs-
22-10X’, panels A, B, E and F), all 22 cell type signatures from the LM22 matrix were used as input for cell type prediction methods. In the
second way (‘PBMCs-6-10X’,panels C, D, G and H), only the six cell types from the LM22 that could be mapped to the seven cell clusters
were used as input for cell type prediction methods. For CIBERSORT and METANEIGHBOR, two approaches were used, one with the original
LM22 matrix with continuous gene expression values, that we called CIBERSORT ‘continuous’ (CIBER(c)) and METANEIGHBOR ‘continuous’
(META(c)), and another with a thresholded and binarized version of the LM22 matrix, that we called CIBERSORT ‘binary’ (CIBER(b)) and
METANEIGHBOR ‘binary’ (META(b)).

(0.69 vs. 0.34, Figure 4D vs. 4B); and the average PR Some methods clearly separated from the rest using PR curve
AUC using ‘PBMC-6-SeqWell’ was higher than that using analyses. For instance, the two highest PR AUCs obtained
‘PBMC-22-SeqWell’ (0.79 vs. 0.21, Figure 5D vs. 5B). in this study were for CIBERSORT ‘continuous’ using the
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Figure 5. Performance and robustness analysis of cell type prediction methods using Seq-Well PBMCs scRNA-seq data. The same
procedure as described in Figure 2 for ROC and PR AUCs of the liver and retinal neuron datasets was used here for the PBMC dataset
measured with the Seg-Well technology. Please see Figure 2 legend for details. Six cell clusters from the Seqg-Well scRNA-seq measurements
could be mapped vs. six out of 22 cell types of the PBMC LM22 matrix signatures. This dataset was analysed in two ways. In the first way

(‘PBMCs-22-SeqWell’,

panels A, B, E and F), all 22 cell type signatures from the LM22 matrix were used as input for cell type prediction

methods. In the second way (‘PBMCs-6-SeqgWell’, panels C, D, G and H), only the six cell types from the LM22 that could be mapped to the six
cell clusters were used as input for cell type prediction methods. For CIBERSORT and METANEIGHBOR, two approaches were used, one with
the original LM22 matrix with continuous gene expression values, that we called CIBERSORT ‘continuous’ (CIBER(c)) and METANEIGHBOR
‘continuous’ (META(c)), and another with a thresholded and binarized version of the LM22 matrix, that we called CIBERSORT ‘binary’

(CIBER(b)) and METANEIGHBOR ‘binary’ (META(b)).

‘PBMC-6-SeqWell’ dataset (PR AUC = 1, Figure 5D) and CIB-
ERSORT ‘binary’ using the liver dataset (PR AUC = 0.98,
Figure 2B). Interestingly, CIBERSORT ‘binary’ also showed
some of the lowest PR AUCs in this study, with a PR AUC = 0.17
using the ‘Tabula Muris 11’ dataset (Figure 3B) and PR

AUC = 0.15 using the ‘PBMC-22-SeqWell’ dataset (Figure 5B).
A similar behaviour was observed for METANEIGHBOR
‘binary’ and ‘continuous’ showing low PR AUCs using the
‘PBMC-22-10X" (PR AUC = 0.19 each) and ‘PBMC-22-
SeqWell’ datasets (PR AUC = 0.17 and 0.22; Figures 4B,
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Figure 6. Summary of performance and computing time of cell type prediction methods using scRNA-seq data. (A) A heatmap showing
a summary of cell type prediction ROC AUCs for the five datasets used (x-axis), including two variants each of the Tabula Muris and PBMC
datasets, for the five methods studied (y-axis), including two approaches for CIBERSORT (‘binary’ CIBER(b), and ‘continuous’ CIBER(c))
and METANEIGHBOR (‘binary” META(b), and ‘continuous’” META(c)). The mean ROC AUCs for each method across all sScRNA-seq datasets
and for each dataset across all methods are provided. (B) A heatmap similar to (A), but showing PR AUC values. (C) A heatmap showing
the percentage of clusters correctly assigned by each method for each dataset. (D) A heatmap showing computing times for each cell type
prediction task and the mean across all scRNA-seq datasets. Actual values for panels A to D are provided in Supplementary Table 1. (E) Violin
plots showing the influence of the number of genes in cell type signatures on methods that use gene sets as inputs. The number of genes in
the signatures is shown on the x-axis along the number of signatures with that number of genes, in brackets. The rank of the expected (gold
standard) predictions is shown on the y-axes. A perfect method would show its gold standard predictions ranked as ‘1’.
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Figure 5B), but a considerable increase using the reduced ver-
sions of the same datasets: ‘PBMC-6-10X" (PR AUC = 0.71 for
METANEIGHBOR ‘continuous’ and 0.54 for METANEIGHBOR
‘binary’) and ‘PBMC-6-SeqWell (PR AUCs = 0.8 each).

GSVA and ORA showed relatively stable PR AUCs across
datasets, and GSVA was one of the methods showing the highest
PR AUC using the liver, retinal neuron, ‘Tabula Muris 6’ and
PBMC-10X datasets (Figure 6B). GSEA and METANEIGH-
BOR ‘binary’ showed lower PR AUCs than other methods
using the liver, retinal neuron and ‘Tabula Muris 11’ datasets
(Figure 2B, 2D, Figure 3B). A summary of these observations
is provided in Figure 6B and Supplementary Table 1.

In terms of the PR AUC robustness analysis, in general, all
five methods achieved their more robust behaviour using
the Tabula Muris datasets (Figure 3F, H). Other cases where
the PR AUCs were robust include the liver (Figure 2F) and
‘PBMC-6-SeqWell’ datasets (Figure 5H).

GSVA was one of the methods that maintained higher PR AUC
values than other methods upon removal of genes from signa-
tures; in particular using the liver (Figure 2F), ‘PBMC-6-10X"
(Figure 4H) and ‘PBMC-6-SeqWell’ datasets (Figure 5H).
For instance, both GSVA and ORA tolerated removal of up to
60% of genes from the liver cell types signature to maintain PR
AUCs 2 0.5; whereas CIBERSORT ‘binary’ tolerated removal
of 50% of the genes and METANEIGHBOR ‘binary’ only 10%,
using the same cutoff (Figure 2F). METANEIGHBOR ‘continu-
ous’ showed high PR robustness for the ‘PBMC-6-10X" dataset
(Figure 4H), but interestingly, such behaviour was not recapitulated
using the ‘PBMC-6-SeqWell’ dataset (Figure 5H).

Computing time benchmark

Computing times varied from 0.03s for METANEIGHBOR
‘continuous’, processing the ‘PBMC-6-SeqWell’ dataset, to
9,330s (2.6 hours) for CIBERSORT ‘continuous’, processing
the ‘PBMC-22-10X’ dataset (Figure 6D and Supplementary
Table 1). For all five datasets, METANEIGHBOR ‘continuous’
was the fastest method, with times between 0.03 and 0.11s,
closely followed by METANEIGHBOR ‘binary’, with times
between 0.4 and 1.77s. GSVA ranked third (0.4 to 4.74s),
followed by ORA (1 to 28s). GSEA was 1 to 3 orders of magni-
tude slower than the preceding methods (48 to 1255s). Finally,
the slowest methods were CIBERSORT ‘binary’ (46 to 1,522s)
and CIBERSORT ‘continuous’ (75 to 9,330s).

The size of the cell type gene expression signatures used
for CIBERSORT influenced the speed of classification. For
example, for the analysis of the PBMC datasets with CIBER-
SORT ‘continuous’ we used the original LM22 signature with
547 genes, whereas the thresholded binary matrix used for CIB-
ERSORT ‘binary’ had 248 genes. CIBERSORT ‘continuous’
took 1.3 to 6 times longer than CIBERSORT ‘binary’ without
much difference in performance (Figure 6C and Supplementary
Table 1).
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Influence of number of genes in signatures on method
performance

We evaluated how the number of genes in cell type signatures
affected the performance of the five tested methods. As shown
in Figure 6E, all methods tended to rank positive gold stand-
ards as top hits (i.e. the greater the number of genes in cell
type signatures, the greater the chances that a method correctly
predicts a cell type). All methods tended to have mispredictions
(ranks > 1) using cell type signatures of only one or two genes.
Methods like GSEA and GSVA showed a marked improve-
ment when the cell type signatures had 11 genes or more
compared with <11 genes, whereas METANEIGHBOR ‘binary’
improved considerably when signatures had three or more
genes, compared with one or two genes. CIBERSORT ‘binary’
and ORA showed a partial improvement when signatures had
six or more genes, but they had peaks of mispredictions at
11-20 genes (ORA) and 21-50 genes (CIBERSORT ‘binary’).

Discussion

The size and volume of scRNA-seq datasets are continually
increasing. While most data processing is automated, cell
type labeling of cell clusters is still conducted manually by
most researchers. This is in part due to a scarcity of reference
cell type gene expression signatures and also because most
methods to address this challenge are only available via web
servers supporting limited number of cell types (Alavi et al.,
2018; Alquicira-Hernandez er al., 2018), making it difficult
for users to adapt them for their needs. In this study we used
five scRNA-seq datasets to benchmark five methods that can
address these challenges. Although three of the five tested
methods (GSEA, GSVA and ORA) were not explicitly devel-
oped to identify cell types, their extensive use in gene set
enrichment tasks and their wide portability motivated us to test
them as cell type classifiers. METANEIGHBOR was devel-
oped to analyse scRNA-seq datasets and can be adapted to
predict cell types. CIBERSORT is implemented both as a
webserver and a local command line software package that can
be freely licensed for six months by academic researchers,
enabling us to benchmark it with relatively low programmatic
effort.

Our results show that for the five scRNA-seq datasets used, all
five tested methods achieved good performance by ROC curve
analyses. However, ROC curves tend to overestimate performance
when the ratio of positive to negative predictions is highly
skewed. For this reason, we also conducted PR curve analyses.
The PR curve analyses showed more variation in the performance
of methods than the ROC curves. On average, for the five
scRNA-seq datasets, GSVA was one of the top performers by
ROC curve analysis and the top performer by PR curve analyses
(Figure 6A, B). GSVA’s performance was more robust than
that of other methods in analyses where we subsampled genes
from cell type signatures. All of these features are particularly
important at this stage of the scRNA-seq field, as only limited
information on cell type gene expression signatures is avail-
able. Notably, despite its relative simplicity, ORA showed a
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performance comparable to GSVA using most datasets and
even higher using the liver dataset. A caveat of ORA is that it
requires one extra step compared with other methods, which is
to threshold the Exy matrix, typically using an arbitrary
cutoff, often selected based on the overall distribution of
gene expression values, as we used here. CIBERSORT and
METANEIGHBOR were also comparable or even superior to
GSVA in datasets where the number of cell clusters matched
the number of cell types expected. For instance, both former
methods outperformed GSVA using the PBMC-6-SeqWell data-
sets, and CIBERSORT’s performance was also higher than that
of GSVA using the liver dataset. However, both CIBERSORT
and METANEIGHBOR were markedly affected, and outper-
formed by GSVA, when the number of cell type signatures
exceeded the number of cell clusters (i.e. “Tabula Muris 11’ and
the PBCM-22-* datasets). A caveat of METANEIGHBOR is
that in addition to the typical inputs (cell type signatures and Evﬂ_
matrix) it requires a training phase based on known cell type
gene markers to compute an AUC ROC as its prediction
scores, but known cell type markers are not available for
several scRNA-seq datasets. GSEA was the method with the
lowest PR AUC values using all five datasets and was also one
of the least stable in robustness analyses.

An interesting observation from the robustness analyses is that
for some datasets and methods, subsamples of genes from cell
type gene sets produced ROC and PR AUCs higher than those
using 100% of the genes. This was particularly noticeable for
CIBERSORT using retinal neurons, ‘Tabula Muris 11°, and the
PBMC datasets, and for METANEIGHBOR using the PBMC
datasets. This suggests that adding subsampling steps in the
pipelines for some methods could improve their performance.

In terms of computing times, METANEIGHBOR was the fast-
est, and along with GSVA and ORA, offered implementa-
tions which were orders of magnitude faster than those of
CIBERSORT and GSEA. Our results showed that CIBER-
SORT ‘binary’ performance was comparable to CIBERSORT
‘continuous’ by both ROC and PR curve analyses, and our
implementation of the former reduced computing times
between 1.3 and 6 times. Current publicly available scRNA-seq
datasets typically contain on the order of thousands of cells,
grouped into dozens of cell clusters. In our tests, each of
the five tested methods completed the cell type prediction
tasks in seconds or minutes. However, bigger datasets from the
Human Cell Atlas (Rozenblatt-Rosen er al., 2017) and other
sources are expected to have millions of cells (e.g. 1.3 million
brain cell from E18 mice, NCBI GEO: GSE93421) grouped
into hundreds of clusters, for which the fastest method imple-
mentations will be preferred. Considering overall performance,
robustness to incomplete cell type signatures, and computing
times, we found that GSVA offers one of the best options
to label cell clusters from scRNA-seq datasets.

A limitation of this study is that we included only five scRNA-
seq datasets (Table 1): liver, retinal neurons, Tabular Muris,
and two PBMC datasets, plus variants of the latter three. This
was due to the lack of reference cell type annotations needed
for our ROC and PR curve analyses. As more scRNA-seq
datasets become available and authors provide gold standard
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annotations of their cell types, our benchmark can be
expanded. In the future, carefully annotated scRNA-seq cell
clusters and their associated gene expression signatures and gene
expression markers will likely replace literature curated gene
expression marker sets, but we need many more and diverse
scRNA-seq datasets to be generated to get to that stage. It would
also be useful to identify recommended prediction score thresh-
olds that maximize performance for each method as well as
identify cell type gene sets that always perform poorly, but
achieving general results from these analyses will likely need a
larger and more diverse benchmark dataset. One way to address
this is to predict cell types from individual cells, in which
case a cross-validation approach can be used based on cluster
labeling data (Abdelaal er al., 2019), but this has the caveat
that current generation scRNA-seq methods identify relatively
few genes expressed per cell, compared to the cell clusters
we analyzed here.

Studying how cluster parameters and data structure (e.g.
cluster density, fuzzy vs. hard clusters) affects our results
should also be considered in future work. One of the challenges
that we faced while adapting the LM22 signature to predict
cell types in the scRNA-seq cell clusters generated by
Zheng et al. (2017a) was that, even though both datasets
correspond to PBMCs, the granularity of their cell type labels
was different. For instance, the LM22 signature contains six
T-cell types, including three CD4+ (naive, memory resting, and
memory activated), follicular helper, regulatory and gamma
delta, whereas the dataset of Zheng er al. (2017a) contained
labels for four T-cell related cell types: CD4+/CD25 T Regu-
latory, CD4+/CD45RO+ Memory, CD4+/CD45RA+/CD25-
Naive T and CD4+ T Helper2. Thus, even though these two
datasets both classify PBMCs, their cell types cannot be easily
related one-to-one. This could be addressed with an ontology
analogous to the Gene Ontology (Ashburner er al., 2000) but
dedicated to cell type annotations (Bakken er al., 2017;
Bard er al., 2005). Fortunately, the Cell Ontology is being
developed for this purpose. This is particularly important as
increasing numbers of signatures are expected to arise from
initiatives like the Human Cell Atlas (Rozenblatt-Rosen et al.,
2017). However, it is an open question how cell cluster
annotation performance will be affected when using these
eventual comprehensive cell type gene expression marker
set databases, as we observed that many methods are highly
sensitive in precision-recall analysis when used with larger
cell type marker gene set databases that contain additional cell
types not represented in a given scRNA-seq dataset. Future
work will need to study confusion matrices of all methods and
better quantify precision scores. We hope our open source
benchmark code can be extended as a useful starting point
for future work.

Data availability

Underlying data

The datasets used in this study were processed from the following
source data:

Single cell RNA-sequencing data from liver cells. Accession
number, GSE1154609. https://identifiers.org/geo/GSE115469.
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93421
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115469
https://identifiers.org/geo/GSE115469

Single cell RNA-sequencing of retinal bipolar cells. Accession
number, GSE81905. https://identifiers.org/geo/GSE81905.

Single cell RNA-sequencing of Tabula Muris. Accession number,
GSE109774. https://identifiers.org/geo/GSE109774.

Single cell RNA-sequencing data from peripheral blood mono-
nuclear cells using 10X Chromium technology. Accession
number, SRX1723926. https://identifiers.org/insdc.sra/
SRX1723926.

Single cell RNA-sequencing data from peripheral blood mono-
nuclear cells using Seq-Well technology. Accession number,
GSE92495. https://identifiers.org/geo/GSE92495.

Extended data

Zenodo: Supplementary data for “Evaluation of methods to
assign cell type labels to cell clusters from single-cell RNA-
sequencing data”. https://doi.org/10.5281/zenodo.2575049
version 2.1.1 (Diaz-Mejia et al., 2019a).

This project contains the five processed scRNA-seq data-
sets—from liver cells (MacParland er al., 2018), retinal neurons
(Shekhar er al., 2016b), Tabula Muris (Tabula Muris
Consortium et al., 2018a), peripheral blood mononuclear
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cells using 10X (Zheng er al., 2017a) and Seq-Well (Gierahn
et al., 2017a)—examined in this study.

Software availability

R and Perl scripts used to run and benchmark cell type
labeling methods available from: https://github.com/jdime/
scRNAseq_cell_cluster_labeling.

Archived code at the time of publication: https://doi.org/10.5281/
zenodo.3350461 (Diaz-Mejia et al., 2019b).

License: MIT license.
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gene expression patterns for cell types (either cell type-specific gene sets or cell type-specific expression
profiles). In general, they found that all four methods perform reasonably well, although ORA and GSVA
perform more consistently well across the three data sets. | do have some questions about the details of
how the work was done. The answers to these questions are important for interpreting the results,
reproducing the work, or extending it to include additional tools.

1. Presumably the approach to creating the cell clusters, and how dense versus diffuse the clusters
are, can have an impact on performance and confidence in the output?

2. How exactly were clusters mapped to cell types? From Figure 1E, it appears that each of the four
tools generates a numerical vector for each cell type that contains a score for each cluster,
presumably corresponding to the likelihood that that cluster is of the corresponding cell type.

® |s acluster always assigned to the cell type corresponding to its highest score? (presumably
yes).

® |nthe example, each cell type and each cluster has only a single high score with all other
scores being very small. What is the distribution of scores typically? Do clusters sometimes
have multiple high scores? Were ties ever observed?
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® Can multiple clusters map to the same cell type?
® Must a cluster be assigned to a cell type? Or could some remain unassigned?
3. How were the performance curves generated? What parameter was varied?

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: computational immunology

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

J. Javier Diaz-Mejia, University of California San Francisco, San Francisco, USA

R3-Q1) Presumably the approach to creating the cell clusters, and how dense versus diffuse the
clusters are, can have an impact on performance and confidence in the output?

R3-A1) We agree that cluster density and other structure in the data will likely impact automatic
cluster annotation performance. Investigating the relationship between a given structure in the data
(e.g. density vs. sparseness) and performance would require simulations that may not be realistic.
Thus, we limited our analysis to published data with available gold standards. We have now added
this point to the discussion.

R3-Q2)

[a] How exactly were clusters mapped to cell types? From Figure 1E, it appears that each of the
four tools generates a numerical vector for each cell type that contains a score for each cluster,
presumably corresponding to the likelihood that that cluster is of the corresponding cell type.

[b] Is a cluster always assigned to the cell type corresponding to its highest score? (presumably
yes).

[c] In the example, each cell type and each cluster has only a single high score with all other scores
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being very small. What is the distribution of scores typically? Do clusters sometimes have multiple
high scores? Were ties ever observed?

[d] Can multiple clusters map to the same cell type?

[e] Must a cluster be assigned to a cell type? Or could some remain unassigned?

R3-A2)

[a] Correct, each tool generates a numerical vector as the reviewer describes.

[b] Yes, a cluster is always assigned to the cell type corresponding to its highest score.

[c] In the methods that we compared, each cell cluster vs. each cell type receives only one score.
As can be observed in our new Figure 6E, most cell clusters which were incorrectly classified (i.e.
that were not the top-1 ranked prediction) still had top-ranks (ticker distribution in the violin plots
closer to the top-1 ranks), which indicates that some clusters can have multiple high scores. We
found that 118 out of all 1,276 (9.2%) cell cluster labeling predictions we ran showed ties in the
top-score: 65 of the 118 ties (68%) corresponded to METANEIGHBOR ‘binary, 24 (20%) to ORA,
15 (13%) to METANEIGHBOR ‘continuous’, 10 (8%) to GSEA, and 4 (3%) to GSVA. None of the
CIBERSORT analyses showed ties.

[d] Yes, multiple clusters can map to the same cell type and this is particularly the case for the
newly incorporated Tabula Muris dataset, where 130 cell clusters map to 53 cell types. This
doesn’t affect our evaluation because a method is not penalized for predicting that multiple clusters
have the same cell type annotation.

[e] Yes, a cluster must be assigned a cell type in our case because all clusters have a cell type
assignment in our gold standards. In the case of the newly incorporated PBMC-SegWell data
(Gierahn et al., 2017), some of the cell clusters were labeled as ‘Removed_’ by the authors, and
they didn’t classify those clusters into cell types, thus we did not include these in our analysis.

As mentioned above in response to reviewers 1 and 2, we’ve updated the Methods section
“Implementation of tested methods and transformation of enrichment metrics for ROC and PR
analyses” to clarify all of these points.

R3-Q3) How were the performance curves generated? What parameter was varied?

R3-A3) As mentioned above in response to reviewers 1 and 2, we’ve updated the Methods section
“Implementation of tested methods and transformation of enrichment metrics for ROC and PR
analyses” to clarify this. For each dataset, we combine all cell type gene set prediction scores for a
method across all clusters into one column and vary the prediction score threshold to compute the
ROC and PR curves.

Competing Interests: No competing interests were disclosed.

Reviewer Report 22 March 2019
https://doi.org/10.5256/f1000research.20232.r45811
© 2019 Andrews T et al. This is an open access peer review report distributed under the terms of the Creative Commons

Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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Jimmy Tsz Hang Lee

Wellcome Sanger Institute, Hixton, UK
Tallulah Andrews

Wellcome Sanger Institute, Hinxton, UK

Diaz-Mejia et al. test the ability of four different algorithms to correctly annotate a set of clusters identified
in single-cell RNA-seq data. They find that GSVA tends to be the most accurate and fastest method,
interestingly they find ORA and GSVA are much more robust to small numbers of marker genes than
GSEA or CIBERSORT. This is a very useful and timely study, as manual annotation of cell-types is
currently the main bottleneck when analyzing single-cell RNA-seq data.

Comments:

1. It was unclear to me how the accuracy of the classification methods was evaluated. What was the
gold standard truth used for each dataset? Were clusters assigned to (a) the single cell-type for
which they had the greatest score or (b) all cell-types where their score exceeded some threshold,
or (c) to the single cell-type for which they had the greatest score provided that score was above
some threshold or another approach? This is crucial to interpreting the PR and ROC curves
presented in the results.

Based on the first sentence of the “Precision-Recall curve analysis” section: | inferred you to be
using method (c), but using such a method should not necessarily lead to recall values of 1 as
clusters which are more similar to an incorrect cell-type than to the correct cell-type would never
become true positives. Thus, | had inferred you to be using method (b) based on Figure 2. It would
be very helpful to add a section to the Methods explaining precisely how the accuracy was
evaluated.

2. In addition, | suggest adding figures/tables for the accuracy of each classification approach (% of
clusters correctly assigned) when all clusters are simply assigned to the cell-type for which they
have the highest score, since | expect this to be the most common approach users of these
classifications would take.

3. The main weakness of the paper, as the authors admit, is the small number of datasets used to test
the classification methods, particularly since the variability in performance between datasets was
high. It would be useful to show reproducibility of the results in additional datasets.

We acknowledge identifying marker gene lists for many different tissues can be very time
consuming, there are datasets similar to those the authors have already have markers for that they
could use. E.g. mouse retina: Shekhar et al. 2016, PBMCs: Gierahn et al. 2017 (Seg-Well).
Alternatively, they could do cross-comparisons using the two mouse cell atlas (Tabula Muris® and
Mouse Cell Atlas?). Or use datasets such as Pollen et al., 2014° where gold-standard cell-type
identity is known by design.

4. The authors show that performance degrades when small numbers of marker genes are used by
the classifiers. Is it the case that more marker genes is always better or does performance also
degrade if too many genes are used?

References

1. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ,
Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR: Comprehensive Classification of
Retinal Bipolar Neurons by Single-Cell Transcriptomics.Cell. 2016; 166 (5): 1308-1323.e30 PubMed
Abstract | Publisher Full Text

2. Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek
AK: Seqg-Well: portable, low-cost RNA sequencing of single cells at high throughput.Nat Methods. 2017;
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3. Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and
processing, Library preparation and sequencing, Computational data analysis, Cell type annotation,
Writing group, Supplemental text writing group, Principal investigators: Single-cell transcriptomics of 20
mouse organs creates a Tabula Muris.Nature. 562 (7727): 367-372 PubMed Abstract | Publisher Full Text
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5. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen
P, Ramalingam N, Sun G, Thu M, Norris M, Lebofsky R, Toppani D, Kemp DW, Wong M, Clerkson B,
Jones BN, Wu S, Knutsson L, Alvarado B, Wang J, Weaver LS, May AP, Jones RC, Unger MA, Kriegstein
AR, West JA: Low-coverage single-cell mMRNA sequencing reveals cellular heterogeneity and activated
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Bioinformatics, single-cell RNA-seq, clustering, network inference

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however we have significant
reservations, as outlined above.

Author Response 17 Aug 2019
J. Javier Diaz-Mejia, University of California San Francisco, San Francisco, USA

R2-Q1) It was unclear to me how the accuracy of the classification methods was evaluated. What
was the gold standard truth used for each dataset? Were clusters assigned to (a) the single
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cell-type for which they had the greatest score or (b) all cell-types where their score exceeded
some threshold, or (c) to the single cell-type for which they had the greatest score provided that
score was above some threshold or another approach? This is crucial to interpreting the PR and
ROC curves presented in the results.

Based on the first sentence of the “Precision-Recall curve analysis” section: | inferred you to be
using method (c), but using such a method should not necessarily lead to recall values of 1 as
clusters which are more similar to an incorrect cell-type than to the correct cell-type would never
become true positives. Thus, | had inferred you to be using method (b) based on Figure 2. It would
be very helpful to add a section to the Methods explaining precisely how the accuracy was
evaluated.

R2-A1) Apologies for the confusion around this point. We have now clarified how the ROC and PR
curves were computed in Figure 1 and the text, as described for reviewer 1, above. We combine all
cell type gene set prediction scores for a method across all clusters into one column and vary the
prediction score threshold to compute the ROC and PR curves. A cluster is only allowed to be
correctly labeled using one cell type, as enforced by our gold standard cluster annotation data (the
set of cell types an author used to label their given cell clusters). So this matches strategy (c).

R2-Q2) In addition, | suggest adding figures/tables for the accuracy of each classification approach
(% of clusters correctly assigned) when all clusters are simply assigned to the cell-type for which
they have the highest score, since | expect this to be the most common approach users of these
classifications would take.

R2-A2) Percent of clusters correctly assigned is now included in Figure 6C and Supplementary
Table 1. It is useful to have a range of performance indicators to capture different performance
facets.

R2-Q3) The main weakness of the paper, as the authors admit, is the small number of datasets
used to test the classification methods, particularly since the variability in performance between
datasets was high. It would be useful to show reproducibility of the results in additional datasets.
We acknowledge identifying marker gene lists for many different tissues can be very time
consuming, there are datasets similar to those the authors have already have markers for that they
could use. E.g. mouse retina: Shekhar et al. 20161, PBMCs: Gierahn et al. 2017 (Seq-Well)2.
Alternatively, they could do cross-comparisons using the two mouse cell atlas (Tabula Muris3 and
Mouse Cell Atlas4). Or use datasets such as Pollen et al., 20145 where gold-standard cell-type
identity is known by design.

R2-A3) We thank the reviewer for suggesting these datasets. We already used Shekhar et al.
2016 in version 1 of our paper. In the current version, we added Gierahn et al. (2017) as the
authors provide cell type labels for the cell clusters, and used the LM22 cell type signatures as
input for the prediction methods. We also added the Tabula Muris dataset. We contacted one of
the Tabula Muris authors (Angela Pisco), who kindly gave us access to a set of cell type signatures
curated by experts on tissues of the Tabula Muris dataset. From the 20 tissues provided in the
Tabula Muris data we could map 11 of them into the dataset of cell type signatures and that is what
we used as ‘Tabula Muris 11’ in the current version of our paper. We also investigated the
influence of cell type signatures using the PBMC datasets (10X and Seq-Well) using either the full
LM22 signature database, that we call ‘PBMC-22’, or only the six cell types expected to occur in
the data, that we call ‘PBMC-6’. Altogether, we provide analysis using eight dataset variants, up
from the three in our initial manuscript.
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R2-Q4) The authors show that performance degrades when small numbers of marker genes are
used by the classifiers. Is it the case that more marker genes is always better or does performance
also degrade if too many genes are used?

R2-A4) In general, having more marker genes is better, but not always. We approached this
question by examining the influence of the number of genes in each gene set (x-axis) and asking
what rank does the corresponding gold standard positive receive (y-axis). As can be seen in Figure
6E, the most common scenario is that the fewer the number of genes in the signatures, the more
chances that the prediction is incorrect (i.e. assigned a rank lower than the top-rank). However,
there are a few exceptions, like ORA in the 11-20 genes bin, where we found more incorrect
predictions than having 6-10 genes, or CIBERSORT, which had higher error rate in the 31-50
genes category, than in the 11-20 or 21-30 categories. Thus, it is possible to use too many genes,
but it is not always clear how many genes this will be and the performance drop is not great for
most of the cases we have data for. We have added this analysis to the paper.

Competing Interests: No competing interests were disclosed.

Reviewer Report 20 March 2019
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© 2019 Freytag S. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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Saskia Freytag
Epigenetics and Genomics, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia

Diaz-Mejia et al have produced a nice research article on assessing methods for assigning cluster labels
to cell clusters from scRNA-seq. | think this work is of great importance, but | felt that some crucial cluster
labelling methods were not compared. | hope the authors can update the article with some of the
suggestions:

® The biggest suggestion for improvement is the choice of methods that the authors compare. The
authors chose to adapt 4 methods originally developed for bulk RNA-seq in order to label clusters.
While their approach is commendable, none of their adapted methods reflect the current standard
practice in the field. Additionally, their claim that methods for cluster labelling in scRNA-seq are too
immature or implemented as web-servers is not true. The website scRNA-tools.org lists 29
methods in this category. Many of these methods, such as scMCA, MetaNeighbour and scmap,
are well-established and frequently used in the field. Furthermore, many of these methods
recommend using annotated scRNA-seq datasets as references instead of bulk data. Hence, it
would be great if the authors could include some of these tools in their analysis.

| am confused as to which classifier parameter was varied in order to generate the ROCs. Were
these comparable across the different methods?
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® |t would be interesting to see what the effect of varying the cluster resolution is to the ability of the
methods to accurately label the populations. Do you obtain more diverse labelling when there are
more clusters?

® | M22is a great reference dataset, but recently a new dataset has become openly accessible. This
dataset, generated by Monaco et al, characterizes 29 human immune cell types by RNA-seq and

flow cytometry. It would be interesting to see if the use of this dataset leads to an improvement.
® | think it would be helpful for the reader if the authors could summarize their results. The sheer

number of comparisons made, means that the reader can feel overwhelmed at the end. A figure

summarizing the various results for each method in each dataset could help clarify the message.

Thank you for making your code publicly available.
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M, Zippelius A, Pedro de Magalhées J, Larbi A: RNA-Seq Signatures Normalized by mRNA Abundance
Allow Absolute Deconvolution of Human Immune Cell Types.Cell Rep. 2019; 26 (6): 1627-1640.e7
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Is the work clearly and accurately presented and does it cite the current literature?
No

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: bioinformatics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Author Response 17 Aug 2019
J. Javier Diaz-Mejia, University of California San Francisco, San Francisco, USA
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R1-Q1) The biggest suggestion for improvement is the choice of methods that the authors
compare. The authors chose to adapt 4 methods originally developed for bulk RNA-seq in order to
label clusters. While their approach is commendable, none of their adapted methods reflect the
current standard practice in the field. Additionally, their claim that methods for cluster labelling in
scRNA-seq are too immature or implemented as web-servers is not true. The website
SscRNA-tools.org lists 29 methods in this category. Many of these methods, such as scMCA,
MetaNeighbour and scmap, are well-established and frequently used in the field. Furthermore,
many of these methods recommend using annotated scRNA-seq datasets as references instead of
bulk data. Hence, it would be great if the authors could include some of these tools in their

analysis.

R1-A1) We thank the reviewer for their comments. We have added MetaNeighbor to the methods
compared. The implementation of MetaNeighbor required considerable communication with one of
the method developers (M. Crow) who kindly guided us on which parts of the MetaNeighbor
source code we needed to modify to make one of its variants (MetaNeighborUS) compatible with
the type of task in our study. As we detail in the Methods section ‘Implementation of tested
methods and transformation of enrichment metrics for ROC and PR analyses’, the original goal of
MetaNeighbor is to quantify cell type replicability across scRNA-seq datasets (that the authors call
‘studies’); whereas in our comparison, we are “comparing” all the clusters in one scRNA-seq
dataset against known cell type specific gene sets or gene expression profiles. Similar to
MetaNeighbor, Scmap projects cells from a scRNA-seq experiment on to the cell types or
individual cells identified in a different experiment. We would need to apply similar workarounds
and modify its code to use it in our study. Although we acknowledge that adding more methods to
our comparison would make our results more complete, these other methods were not designed
for the specific task we evaluate and would require code modifications to work on our input data.
However, we provide an extensible framework, code and datasets that others can use for
additional benchmarks. We now clarify this point in the paper.

R1-Q2) | am confused as to which classifier parameter was varied in order to generate the ROCs.
Were these comparable across the different methods?

R1-A2) Sorry for the confusion. For a set of cell clusters, a given method was used to score each
cluster against all cell type gene sets resulting in a matrix of cell type prediction scores per cluster.
All scores in this matrix were combined into one column to capture all cell type prediction scores
across all clusters and this set of prediction scores was varied to generate the ROC and PR
curves. This is now clarified in Figure 1 and the text.

R1-Q3) It would be interesting to see what the effect of varying the cluster resolution is to the ability
of the methods to accurately label the populations. Do you obtain more diverse labelling when
there are more clusters?

R1-A3) Presumably yes. However, there is a methodological barrier that prevents us from
investigating this aspect of the data using our current evaluation design. Authors of the analyzed
datasets provided gold standard annotations only at a single resolution per dataset, and we use
these. Reclustering the original data to test other resolutions would require gold standards to be
created for those resolutions (ideally by the original authors). However, we agree with the reviewer
that studying the influence of cell cluster resolution is an interesting question. As the field moves
towards increasing the number of sScRNA-seq datasets annotated following standard
ontology-based cell type annotations that consider a hierarchy of cell types at multiple
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granularities, this question could be addressed. We have added this to our discussion.

R1-Q4) LM22 is a great reference dataset, but recently a new dataset has become openly
accessible. This dataset, generated by Monaco et al1, characterizes 29 human immune cell types
by RNA-seq and flow cytometry. It would be interesting to see if the use of this dataset leads to an
improvement.

R1-A4) Thanks for the pointer. We decided to keep the LM22 dataset because only six of the 22
cell types represented in it could be mapped into the PBMC data we analyzed. The Monaco
dataset does not improve this number. Only five of the 17 cell types represented in the Monaco
signature for RNA seq data are present in the PBMC data we analyzed. Furthermore, the ROC
AUC and PR AUC values obtained using the LM22 and the Monaco signature are comparable to
each other (Supplementary Table 2).

R1-Q5) | think it would be helpful for the reader if the authors could summarize their results. The
sheer number of comparisons made, means that the reader can feel overwhelmed at the end. A
figure summarizing the various results for each method in each dataset could help clarify the
message.

R1-A5) Thanks for raising this point. We have now included summary Figure 6.
R1-Q6) Thank you for making your code publicly available.

R1-A6) Thanks. We have updated our GitHub repository with the MetaNeighbor implementation
and modifications to our main wrapper to make it easier to incorporate new methods.

Competing Interests: No competing interests were disclosed.
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