
SOFTWARE TOOL ARTICLE

 netDx: Software for building interpretable patient

classifiers by multi-'omic data integration using patient

similarity networks [version 2; peer review: 2 approved]

Shraddha Pai 1, Philipp Weber 2, Ruth Isserlin 1, Hussam Kaka 1,
Shirley Hui1, Muhammad Ahmad Shah1, Luca Giudice3, Rosalba Giugno3,
Anne Krogh Nøhr4,5, Jan Baumbach2,6, Gary D. Bader 1,7-9

1The Donnelly Centre, University of Toronto, Toronto, Canada
2Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
3Department of Computer Science, University of Verona, Verona, Italy
4The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
5H. Lundbeck A/S, Copenhagen, Denmark
6TUM School of Life Sciences Wiehenstephan, Technical University of Munich, Munich, Germany
7Department of Molecular Genetics, University of Toronto, Toronto, Canada
8Department of Computer Science, University of Toronto, Toronto, Canada
9The Lunenfeld-Tanenbaum Research Institute, Mount Sinal Hospital, Toronto, Canada

First published: 15 Oct 2020, 9:1239
https://doi.org/10.12688/f1000research.26429.1
Latest published: 22 Jan 2021, 9:1239
https://doi.org/10.12688/f1000research.26429.2

v2

Abstract
Patient classification based on clinical and genomic data will further
the goal of precision medicine. Interpretability is of particular
relevance for models based on genomic data, where sample sizes are
relatively small (in the hundreds), increasing overfitting risk netDx is a
machine learning method to integrate multi-modal patient data and
build a patient classifier. Patient data are converted into networks of
patient similarity, which is intuitive to clinicians who also use patient
similarity for medical diagnosis. Features passing selection are
integrated, and new patients are assigned to the class with the
greatest profile similarity. netDx has excellent performance,
outperforming most machine-learning methods in binary cancer
survival prediction. It handles missing data – a common problem in
real-world data – without requiring imputation. netDx also has
excellent interpretability, with native support to group genes into
pathways for mechanistic insight into predictive features.
The netDx Bioconductor package provides multiple workflows for
users to build custom patient classifiers. It provides turnkey functions
for one-step predictor generation from multi-modal data, including
feature selection over multiple train/test data splits. Workflows offer
versatility with custom feature design, choice of similarity metric;
speed is improved by parallel execution. Built-in functions and
examples allow users to compute model performance metrics such as

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 2

(revision)
22 Jan 2021

report report

version 1
15 Oct 2020 report report

Kim-Anh Lê Cao , University of

Melbourne, Melbourne, Australia

1.

Anais Baudot , Aix Marseille University,

Marseille, France

Judith Lambert, Aix Marseille University,

Marseille, France

Laurent Tichit , Aix Marseille University,

2.

Page 1 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://f1000research.com/articles/9-1239/v2
https://f1000research.com/articles/9-1239/v2
https://f1000research.com/articles/9-1239/v2
https://orcid.org/0000-0002-1048-581X
https://orcid.org/0000-0003-3101-6817
https://orcid.org/0000-0002-6805-2080
https://orcid.org/0000-0002-2243-2010
https://orcid.org/0000-0003-0185-8861
https://doi.org/10.12688/f1000research.26429.1
https://doi.org/10.12688/f1000research.26429.2
https://f1000research.com/articles/9-1239/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://f1000research.com/articles/9-1239/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0003-3923-1116
https://orcid.org/0000-0003-0885-7933
https://orcid.org/0000-0002-8350-1446
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.26429.2&domain=pdf&date_stamp=2021-01-22

Corresponding authors: Shraddha Pai (shraddha.pai@utoronto.ca), Gary D. Bader (gary.bader@utoronto.ca)
Author roles: Pai S: Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Weber P: Formal Analysis,
Software; Isserlin R: Conceptualization, Methodology, Software; Kaka H: Conceptualization, Methodology, Software; Hui S:
Methodology, Software, Writing – Review & Editing; Shah MA: Methodology, Software; Giudice L: Methodology, Software, Writing –
Original Draft Preparation, Writing – Review & Editing; Giugno R: Methodology, Supervision, Writing – Review & Editing; Nøhr AK:
Software; Baumbach J: Supervision; Bader GD: Conceptualization, Methodology, Resources, Supervision, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the U.S. National Institutes of Health grant number P41 GM103504 (NRNB) and R01
HG009979 (Cytoscape). JB and PW received financial support from JB's Villum Young Investigator Grant nr. 13154. Part of JB's work was
also funded by H2020 project RepoTrial (nr. 777111).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Pai S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Pai S, Weber P, Isserlin R et al. netDx: Software for building interpretable patient classifiers by multi-'omic
data integration using patient similarity networks [version 2; peer review: 2 approved] F1000Research 2021, 9:1239
https://doi.org/10.12688/f1000research.26429.2
First published: 15 Oct 2020, 9:1239 https://doi.org/10.12688/f1000research.26429.1

AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring
pathways and the final integrated patient network in Cytoscape.
Advanced users can build more complex predictor designs with
functional building blocks used in the default design. Finally, the
netDx Bioconductor package provides a novel workflow for pathway-
based patient classification from sparse genetic data.

Keywords
precision medicine, networks, classification, supervised learning,
genomics, data integration

This article is included in the Bioconductor

gateway.

This article is included in the RPackage

gateway.

Marseille, France

Any reports and responses or comments on the

article can be found at the end of the article.

Page 2 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

mailto:shraddha.pai@utoronto.ca
mailto:gary.bader@utoronto.ca
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.26429.2
https://doi.org/10.12688/f1000research.26429.1
https://f1000research.com/gateways/bioconductor
https://f1000research.com/gateways/bioconductor
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage

Introduction
Supervised learning methods are useful in clinical genomics for disease diagnosis, risk stratification for prog-
nosis, and evaluating treatment response. Machine learning is a powerful analytic approach that can identify pat-
terns separating patient groups, but interpreting models remains an active area of research1. Interpretability is
desirable to better understand biological mechanism underlying the phenotype and for rational treatment design.
It is also important for genomic applications, where most contemporary datasets have fewer than a thousand
samples, increasing the risk of overfit models that do not independently replicate. Separately, most machine learn-
ing methods do not handle missing data – a common feature of real-world datasets – without prior data imputa-
tion or filtering. netDx is a supervised learning algorithm that classifies patients by integrating multimodal patient
data2. It is notable among machine learning methods for handling missing data without imputation, and excels at
interpretability by enabling users to create biologically-meaningful grouping of features, such as grouping genes
into pathway-level features. netDx integrates multi-modal data by converting each layer into a patient similarity
network and then integrating these networks (Figure 1a).

Figure 1. netDx concepts and software workflow. (a) Conceptual visualization of patient similarity networks. Nodes
are patients and edge weights measure pairwise similarity. The example shows a two-class problem (high and low risk
patients), with four features shown as patient similarity networks: similarity for clinical (red), gene expression (green),
metabolomic (blue) and mutation (orange) data. (b) Conceptual workflow for netDx predictor. Samples are split into
train and test samples, and training samples are subjected to feature selection (blue flow). Feature selection uses
regularized regression to integrate networks, such that networks with non-zero regression weights have their feature
score increased. This process is repeated with different subsamples of training data, for a user-provided maximum
of times (featScoreMax). This process is repeated for each patient label. Features passing a user-specified threshold
are used to classify held-out samples. Test patients are classified by highest similarity. Patient networks that combine
training and test patients are then integrated; only networks from features passing selection are used for this step.
Label propagation is used to compute similarity of each test patient to training samples from each label; a given patient is
assigned to the class with highest similarity. Average model performance is computed by running this whole process over
several train/test splits. Features with consistent high scores can be used to classify an independent validation set.

 Amendments from Version 1
1. The code in Use Case 4 had outdated function calls. It has now been updated.

2. Error bars in Figure 3 and Figure 13 now reflect standard deviation, rather than standard error of the mean.

3. Function names from the outdated, original version of netDx have now been removed from Table 1.

4. There is now the option of using a Docker image for netDx v1.3.1 for Windows users. The link to the image has now
been added to the text.

Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

This paper provides an introduction to the R-based software implementation of netDx for the Bioconductor
system3 and showcases common use cases. The details of the netDx algorithm and performance have been previ-
ously published2, though we provide a brief conceptual summary here (Figure 1b). As input, the user provides
multiple sets of data measured on the same set of labelled patients. The user additionally provides functions to
compute pairwise patient similarity and optionally, rules to group measures from each data type into features (fea-
ture design). For example, gene expression measures could be grouped into features representing known biologi-
cal pathways. As with other machine learning methods, the user specifies parameters for training the model, such
as the threshold scores for feature selection. Consider an application to predict good or poor patient survival,
using tumour-derived gene expression, DNA methylation and proteomic data. In this scenario, netDx is provided
with three data tables, one per ‘omic data type, a table with patient identifiers and known labels, and the group-
ing rule that one feature is to be created per data layer. Patients are then automatically split into training and test
samples and feature selection is performed using training samples. netDx uses the given feature processing rules
to convert data from different modalities into a common space of patient similarity networks1,2. Feature selection is
performed once per patient label, and features passing selection are used to classify patients from the held-out test
data. Performance robustness is evaluated by repeating this feature selection and classification exercise for multiple
train/test splits. The final model is created from features that scored highly in feature selection, a step that uses
only training samples. A feature may comprise an entire data layer, a single variable, or specified groupings; one
example of the last is grouping gene-level measures into pathways, so that each pathway is a separate feature.
Interpretability is aided by the pathway-level predictor design, which identifies cellular processes with predictive
value.

Methods
Implementation
netDx3 is integrated into the Bioconductor system, a high-quality computational biology software framework
for genomic data analysis in the statistical programming language R4. Figure 2 shows the workflow for build-
ing a model using the netDx software package; Table 1 describes major function calls. netDx uses Bioconductor
data structures and mechanisms for fetching and storing data, and representation of input data.

Operation
Running netDx requires a machine with one or more cores running Intel processors (1.7 GHz i7 or later) or
equivalent, a minimum of 1Gb RAM per thread, and 1Gb disk space. Feature selection is an embarrassingly

Figure 2. netDx software workflow. The yellow box shows data provided to netDx to build the predictor. See use
cases for examples. Patient data is provided as a MultiAssayExperiment object, with the patient metadata in the colData
slot. Variable grouping rules, used for feature design, are provided as a list of lists. The outer list corresponds to a
given assay; each entry in the corresponding list corresponds to one group of measures and is used to create a single
feature. For instance, in a pathway-based design, one entry in the outer list would be “gene expression”, with each
inner list containing genes grouped by pathways. In this scenario, each of these gene groupings generates a single
pathway-level feature. Pathway definitions can be automatically fetched using the fetchPathwayDefinitions() function,
or custom definitions can be provided in the GMT file format. For the workflow using sparse genetic data (see Use
Case 3), such as CNVs, patient CNVs are provided to netDx as a GRanges object. In this instance, pathways are provided
in GRangesList format.

Page 4 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

parallel problem, and we highly recommend running the software on a multi-core machine to reduce
compute time. netDx is currently supported on machines running OS X or Unix-based operating systems. The
software requires the Java executable (v1.8 or higher) to be available on the system path, and will not work on
recent Windows-based operating systems that lack this type of installation. Windows users can access netDx via
a Docker image provided at https://hub.docker.com/repository/docker/shraddhapai/netdx. netDx v1.1.4 requires
R>=3.6 and BioConductor release 3.11 or higher. When building a predictor, patient data is provided to netDx as a

Table 1. Major functions for basic and advanced model-building, and result
evaluation. Intermediate functions used to prepare data are not shown, but are
illustrated in the use cases. The third column shows outdated names for these functions
from the software release that accompanied the paper describing the methods.

Function name
(v1.1.4)

Purpose

buildPredictor() Turnkey function to build predictor

buildPredictor_sparseGenetic() Turnkey function to build predictor from sparse
mutation data of arbitrary ranges (e.g. copy number
variants)

makePSN_NamedMatrix() Create PSN from a single data layer (matrix
representation)

createPSN_MultiData() Create PSN from multiple data layers. May include
calls to makePSN_NamedMatrix()

plotPerf() Plot ROC and PR curves, compute AUROC and AUPR

plotEMap() Plot enrichment map in Cytoscape, annotating main
themes. Used in pathway-based feature design

plotIntegratedPatientNetwork() Plot patient network by integrating predictive features
for all patient labels

splitTrainTest() Randomly split patients into training and test samples

setupFeatureDB() Collects all created features into a database in
preparation for feature selection

compileFeatures() Feature selection process. Iterative scoring of
input networks based on network integration and
regularized regression. Each scoring step is called a
“query”. A pre-specified number of queries is run with
different subsamples of the training set

runFeatureSelection() Feature selection: Run network integration and
label propagation. Used in feature selection for
unit increase in network weights. Also used for
classification of test samples, where it returns
similarity scores

writeQueryFile()
runQuery()

Feature selection: Prepare input for unit-level network
integration.
Feature selection: Run unit-level network integration.
Each run of this step allows unit-level increase of
feature scores

compileFeatureScores() Feature selection: Collect feature scores for unit-level
network integration and feature scoring steps

getPatientRankings() Model evaluation: Process test patient rankings from
label propagation, to compute model performance
measures

predictPatientLabels() Model evaluation: Given patient rankings for each
label, assign predicted class label to test patients

Page 5 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://hub.docker.com/repository/docker/shraddhapai/netdx

MultiAssayExperiment object, a Bioconductor data structure used to represent multi-’omics experiments associated
with a given set of samples. In our usage, data types are collected in the assays slot of the object; the sole excep-
tion is clinical data, which is provided as part of the sample metadata, using the colData slot. Grouping rules are
provided as a nested list object - or list-of-lists (groupList). The outer list consists of one entry per data type, with
corresponding groupings in the inner list. Assays names must be identical in the assays slot and in groupList.

The easiest way to build classifiers is to use the wrapper function, buildPredictor(). This function runs feature
selection and classification over a specified number of train/test splits, and returns all associated feature scores and
detailed classification results in a list object. Advanced users can create custom predictor designs by combining
the individual steps used in buildPredictor() (Table 1).

Use cases
This section describes four use cases for building predictors with netDx. The first uses pathway-level fea-
tures based on gene expression data to generate a binary classifier of breast cancer subtype. The second performs
three-way classification of breast cancer subtype by integrating gene expression, DNA methylation and pro-
teomic assays. The third builds a binary classifier of autism spectrum disorder diagnosis from sparse genetic
mutations. The fourth involves prediction of tumour stage from somatic mutations that have been desparsified
using prior knowledge of gene interaction networks.

Use case 1: Binary classifier from clinical and transcriptomic data, using pathway-level features
Introduction. In this example, we will build a binary breast tumour Luminal A subtype classifier from clinical
data and gene expression data. We will use different rules to create features for each assay. Specifically:

• Clinical measures (e.g. age, stage): Features are defined at the level of variables; similarity is defined
as normalized difference.

• Gene expression: Features are defined at the level of pathways; similarity is defined by pairwise
Pearson correlation.

Feature scoring is automatically performed over multiple random splits of the data into train and blind test parti-
tions. Feature selected networks are those that consistently score highly across the multiple splits (e.g. those
that score 9 out of 10 in ≥70% of splits).

Conceptually, this is what the higher-level logic looks like for building a predictor over multiple random splits
of samples into training and test groups. In the example below, the predictor runs for 100 train/test splits.
Within a split, features are scored from 0 to 10. Features scoring ≥9 are used to predict labels on the held-out
test set (20%). The example shows pseudocode, not actual netDx function calls:

featScoreMax <- 10 # max. score for a feature in feature selection
featSelCutoff <- 9 # features scoring at least this much are used to
 # classify test patients
numSplits <- 100 # number of random train/test splits to run feature
 # selection for. Model performance is averaged over
 # these iterations.

netScores <- list() # scores from feature selection, one entry per split
perf <- list() # model performance for each split

for k in 1:numSplits
 [train, test] <- splitData(80:20) # split data using RNG seed
 featScores[[k]] <- runFeatureSelection(train, featScoreMax)
 topFeat[[k]] <- applyFeatCutoff(featScores[[k]])
 perf[[k]] <- evalModelPerf(topFeat[[k]], test)
end

Setup

suppressWarnings(suppressMessages(require(netDx)))

Data. In this example, we use curated data from The Cancer Genome Atlas, through the Bioconductor
curatedTCGAData package. The goal is to classify a breast tumour into either a Luminal A subtype or
otherwise. The predictor integrates clinical variables selected by the user, along with gene expression data.

Page 6 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Here we load the required packages and download clinical and gene expression data.

suppressWarnings(suppressMessages(library(curatedTCGAData)))

List the available data without downloading any:

curatedTCGAData(diseaseCode="BRCA", assays="*",dry.run=TRUE)

Title DispatchClass
31 BRCA_CNASeq-20160128 Rda
32 BRCA_CNASNP-20160128 Rda
33 BRCA_CNVSNP-20160128 Rda
35 BRCA_GISTIC_AllByGene-20160128 Rda
36 BRCA_GISTIC_Peaks-20160128 Rda
37 BRCA_GISTIC_ThresholdedByGene-20160128 Rda
39 BRCA_Methylation_methyl27-20160128_assays H5File
40 BRCA_Methylation_methyl27-20160128_se Rds
41 BRCA_Methylation_methyl450-20160128_assays H5File
42 BRCA_Methylation_methyl450-20160128_se Rds
43 BRCA_miRNASeqGene-20160128 Rda
44 BRCA_mRNAArray-20160128 Rda
45 BRCA_Mutation-20160128 Rda
46 BRCA_RNASeq2GeneNorm-20160128 Rda
47 BRCA_RNASeqGene-20160128 Rda
48 BRCA_RPPAArray-20160128 Rda

We will work only with the gene expression data in this example:

brca <- suppressMessages(curatedTCGAData("BRCA",c("mRNAArray"),FALSE))

This next code block prepares the TCGA data. In practice you would do this once, and save the data before
running netDx, but we run it here in full to see an end-to-end example.

staget <- sub("[abcd]","",sub("t","",colData(brca)$pathology_T_stage))
staget <- suppressWarnings(as.integer(staget))
colData(brca)$STAGE <- staget

pam50 <- colData(brca)$PAM50.mRNA
pam50[which(!pam50 %in% "Luminal A")] <- "notLumA"
pam50[which(pam50 %in% "Luminal A")] <- "LumA"
colData(brca)$pam_mod <- pam50

tmp <- colData(brca)$PAM50.mRNA
idx <- union(which(tmp %in% c("Normal-like","Luminal B","HER2-enriched")),
 which(is.na(staget)))
pID <- colData(brca)$patientID
tokeep <- setdiff(pID, pID[idx])
brca <- brca[,tokeep,]

remove duplicate assays mapped to the same sample
smp <- sampleMap(brca)
samps <- smp[which(smp$assay=="BRCA_mRNAArray-20160128"),]
notdup <- samps[which(!duplicated(samps$primary)),"colname"]
brca[[1]] <- suppressMessages(brca[[1]][,notdup])

harmonizing input:
removing 44 sampleMap rows with 'colname' not in colnames of experiments

The predictor will look for columns named ID and STATUS columns in the sample metadata table. netDx uses
these to get the patient identifiers and labels, respectively.

pID <- colData(brca)$patientID
colData(brca)$ID <- pID
colData(brca)$STATUS <- colData(brca)$pam_mod

Design custom patient similarity networks (features). netDx provides a set of default functions to compute
patient similarity, including Pearson correlation, normalized difference, and scaled Euclidean distance. However,

Page 7 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

users may choose to define a custom function that takes patient data and variable groupings as input, and returns
a set of patient similarity networks (PSN) as output. The user can customize what datatypes are used, how they
are grouped, and what defines patient similarity for a given datatype.

When running the predictor (next section), the user simply passes this custom function as an input variable;
i.e. the makeNetFunc parameter when calling buildPredictor().

Note: While netDx supports flexible experimental design, the user must ensure that the design, i.e. the similar-
ity metric and variable groupings are appropriate for a given application. Domain knowledge is recommended
to support good design.

netDx requires that the makeNetFunc function take some generic parameters as input. These include:

• dataList: the patient data, provided as a MultiAssayExperiment object. Refer to online tutorials
for MultiAssayExperiment to see how to construct those objects from data.

• groupList: sets of input data that will define individual networks (e.g. genes grouped into pathways)

• netDir: the directory where the resulting patient similarity networks will be stored.

dataList
In this example, the breast cancer data is already provided to us as a MultiAssayExperiment object:

summary(brca)

Length Class Mode
1 MultiAssayExperiment S4

groupList
This object tells the predictor how to group units when constructing a network. For example, genes may be
grouped into a patient similarity network representing a pathway. This object is a list; the names match those of
dataList while each value is itself a list and reflects a potential network.

groupList <- list()

genes in mRNA data are grouped by pathways
pathList <- readPathways(fetchPathwayDefinitions("January",2018))

Fetching
http://download.baderlab.org/EM_Genesets/January_01_2018/Human/symbol/Human_AllPathways_January_
01_2018_symbol.gmt

File: 182107f6006ac_Human_AllPathways_January_01_2018_symbol.gmt

Read 3028 pathways in total, internal list has 3009 entries

FILTER: sets with num genes in [10, 200]

=> 971 pathways excluded
=> 2038 left

groupList[["BRCA_mRNAArray-20160128"]] <- pathList[1:3]
clinical data is not grouped; each variable is its own feature
groupList[["clinical"]] <- list(
 age="patient.age_at_initial_pathologic_diagnosis",
 stage="STAGE"
)

Page 8 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://bioconductor.org/packages/release/bioc/html/MultiAssayExperiment.html
https://bioconductor.org/packages/release/bioc/html/MultiAssayExperiment.html

So the groupList variable has one entry per data layer:

summary(groupList)

Length Class Mode
BRCA_mRNAArray-20160128 3 -none- list
clinical 2 -none- list

Each entry contains a list, with one entry per feature. Here we have three pathway-level features for mRNA
and two variable-level features for clinical data.

For example, here are the networks to be created with RNA data. Genes corresponding to pathways are to be
grouped into individual network. Such a groupList would create pathway-level networks:

groupList[["BRCA_mRNAArray-20160128"]][1:3]

$UREA_CYCLE
[1] "SLC25A15" "CPS1" "ASL" "ARG2" "SLC25A2" "OTC"
[7] "NMRAL1" "NAGS" "ASS1" "ARG1"

$`CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I`
[1] "AGPAT1" "GPD2" "ABHD5" "GPAT2" "CDS1" "LPCAT3" "LPCAT4"
[8] "CDS2" "AGPAT6" "AGPAT5" "MBOAT7" "AGPAT9" "LCLAT1" "MBOAT2"
[15] "AGPAT4" "GPAM" "AGPAT3" "AGPAT2"

$`SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM`
[1] "IPMK" "INPP5B" "INPP5F" "INPP5D" "MINPP1" "INPP5A" "ITPKA"
[8] "OCRL" "ITPKC" "ITPKB" "SYNJ2" "INPP5J" "INPP5K" "PTEN"
[15] "IMPA2" "INPP1" "SYNJ1" "INPPL1" "IMPA1" "IMPAD1"

For clinical data, we will define each variable as its own network:

head(groupList[["clinical"]])

$age
[1] "patient.age_at_initial_pathologic_diagnosis"

$stage
[1] "STAGE"

Define patient similarity measure for each network. This function is defined by the user and tells the predictor
how to create networks from the provided input data.

This function requires dataList, groupList, and netDir as input variables. The residual ... parameter
is to pass additional variables to makePSN_NamedMatrix(), notably numCores (number of parallel jobs).

In this example, the custom similarity function does the following:

1. Creates pathway-level networks from RNA data using the default Pearson correlation measure makePSN_
NamedMatrix(writeProfiles=TRUE, ...)

2. Creates variable-level networks from clinical data using a custom similarity function of
normalized difference: makePSN_NamedMatrix(writeProfiles=FALSE, simMetric="custom",
customFunc=normDiff).

Page 9 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

makeNets <- function(dataList, groupList, netDir,...) {
 netList <- c() # initialize before is.null() check
 # make RNA nets (NOTE: the check for is.null() is important!)
 # (Pearson correlation)
 if (!is.null(groupList[["BRCA_mRNAArray-20160128"]])) {
 netList <- makePSN_NamedMatrix(dataList[["BRCA_mRNAArray-20160128"]],
 rownames(dataList[["BRCA_mRNAArray-20160128"]]),
 groupList[["BRCA_mRNAArray-20160128"]],
 netDir,verbose=FALSE,
 writeProfiles=TRUE,...)
 }

 # make clinical nets (normalized difference)
 netList2 <- c()
 if (!is.null(groupList[["clinical"]])) {
 netList2 <- makePSN_NamedMatrix(dataList$clinical,
 rownames(dataList$clinical),
 groupList[["clinical"]],netDir,
 simMetric="custom",customFunc=normDiff, # custom function
 writeProfiles=FALSE,
 sparsify=TRUE,verbose=TRUE,...)
 }
 netList <- c(unlist(netList),unlist(netList2))
 return(netList)
}

Note: dataList and groupList are generic containers that can contain whatever object the user requires to
create a PSN. The custom function supports flexible feature design.

Build predictor. Finally, we call the function that runs the netDx predictor. We provide:

• number of train/test splits over which to collect feature scores and average performance (numSplits),

• maximum score for features in one round of feature selection (featScoreMax)

• threshold to call feature-selected networks for each train/test split (featSelCutoff); only features
scoring this value or higher will be used to classify test patients, and

• the information to create the PSN, including patient data (dataList), how variables are to be grouped
into networks (groupList) and the custom function to generate features (makeNetFunc).

Change numCores to match the number of cores available on your machine for parallel processing.

The call below runs two train/test splits. Within each split, it:

• splits data into train/test using the default split of 80:20

• scores networks between 0 to 2 (i.e. featScoreMax=2)

• uses networks that score ≥1 out of 2 (featSelCutoff) to classify test samples for that split.

These are unrealistically low values set so the example will run fast. In practice a good starting point is
featScoreMax=10, featSelCutoff=9 and numSplits=100, but these parameters may need to be tuned
to the sample sizes in the dataset and heterogeneity of the samples. Datasets with high levels of heterogeneity
or small sample sizes may benefit from increased sampling – i.e. higher numSplits value. Increasing this
setting increases the time to train the model but identifies generalizable patterns over a larger set of random
subsamples.

set.seed(42) # make results reproducible
outDir <- sprintf("%s/pred_output",tempdir()) # location for intermediate work
set keepAllData=TRUE to not delete at the end of the predictor run.
This can be useful for debugging.
out <- suppressMessages(
 buildPredictor(
 dataList=brca,groupList=groupList,
 makeNetFunc=makeNets,outDir=outDir,
 numSplits=2L,featScoreMax=2L,
 featSelCutoff=1L,
 numCores=1L,
 logging="none")
)

Page 10 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Examine output
The results are stored in the list object returned by the buildPredictor() call. This list contains:

• inputNets: all input networks that the model started with.

• Split<i>: a list with results for each train-test split

– predictions: real and predicted labels for test patients

– accuracy: percent accuracy of predictions

– featureScores: feature scores for each label (list with g entries, where g is number of patient labels).
Each entry contains the feature selection scores for the corresponding label.

– featureSelected: vector of features that pass feature selection. List of length g, with one entry per
label.

summary(out)

Length Class Mode
inputNets 10 -none- character
Split1 4 -none- list
Split2 4 -none- list

summary(out$Split1)

Length Class
featureScores 2 -none-
featureSelected 2 -none-
predictions 2692 data.frame
accuracy 1 -none-
Mode
featureScores list
featureSelected list
predictions list
accuracy numeric

Reformat results for further analysis
This code collects different components of model output to examine the results.

numSplits <- 2
st <- unique(colData(brca)$STATUS)
acc <- c() # accuracy
predList <- list() # prediction tables

featScores <- list() # feature scores per class
for (cur in unique(st)) featScores[[cur]] <- list()

for (k in 1:numSplits) {
 pred <- out[[sprintf("Split%i",k)]][["predictions"]];
 # predictions table
 tmp <- pred[,c("ID","STATUS","TT_STATUS","PRED_CLASS",
 sprintf("%s_SCORE",st))]
 predList[[k]] <- tmp
 # accuracy
 acc <- c(acc, sum(tmp$PRED==tmp$STATUS)/nrow(tmp))
 # feature scores
 for (cur in unique(st)) {
 tmp <- out[[sprintf("Split%i",k)]][["featureScores"]][[cur]]
 colnames(tmp) <- c("PATHWAY_NAME","SCORE")
 featScores[[cur]][[sprintf("Split%i",k)]] <- tmp
 }
}

Page 11 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Compute model performance
After compiling the data above, plot accuracy for each train/test split:

print(acc)

[1] 0.8507463 0.8059701

Create a ROC curve, a precision-recall curve, and plot average AUROC and AUPR (Figure 3):

predPerf <- plotPerf(predList, predClasses=st)

Examine feature scores and consistently high-scoring features. Use getNetConsensus() to convert the
list data structure into a single table, one per patient label. The rows show train/test splits and the columns show
features that consistently perform well.

We then use callFeatSel() to identify features that consistently perform well across the various train/test
splits. Because this is a toy example, we set the bar low to get some features. Here we accept a feature if it scores
1 or higher (fsCutoff=1) in even one split (fsPctPass=0.05), setting the latter to a low positive fraction.

featScores2 <- lapply(featScores, getNetConsensus)
summary(featScores2)

Length Class Mode
LumA 3 data.frame list
notLumA 3 data.frame list

head(featScores2[["LumA"]])

PATHWAY_NAME
1 CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I.profile
2 SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM.profile
3 UREA_CYCLE.profile
4 age_cont.txt
5 stage_cont.txt
Split1 Split2
1 2 2
2 2 2
3 2 2
4 NA 1
5 NA 1

Figure 3. Average model performance for binary classification of breast tumour as “LumA” or “other” using
clinical and transcriptomic data. Clockwise from top-left: Mean area under ROC curve across train/test splits; mean
area under precision-recall curve; precision-recall curve (average in blue; individual splits in grey); ROC curves (average
in blue; individual splits in grey).

Page 12 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Where features are scored out of 10, a reasonable setting is fsCutoff=9 and fsPctPass=0.7. This setting
gives us features that score a minimum of 9 in at least 70% of the train/test splits.

featSelNet <- lapply(featScores2, function(x) {
 callFeatSel(x, fsCutoff=1, fsPctPass=0)
})
print(head(featScores2[["LumA"]]))

PATHWAY_NAME
1 CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I.profile
2 SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM.profile
3 UREA_CYCLE.profile
4 age_cont.txt
5 stage_cont.txt
Split1 Split2
1 2 2
2 2 2
3 2 2
4 NA 1
5 NA 1

Visualize pathway features as an enrichment map. An enrichment map is a network-based visualization of path-
way connectivity and is used in netDx to visualize themes in predictive pathway-based features5. It is used in
conjunction with the AutoAnnotate Cytoscape app to identify clusters, and apply auto-generated labels to these6.

Use getEMapInput_many() to create the input that helps generate the enrichment map in Cytoscape.

Emap_res <- getEMapInput_many(featScores2,pathList,
 minScore=1,maxScore=2,pctPass=0,out$inputNets,verbose=FALSE)

Write the results to files that Cytoscape can read in:

gmtFiles <- list()
nodeAttrFiles <- list()

for (g in names(Emap_res)) {
 outFile <- sprintf("%s/%s_nodeAttrs.txt",outDir,g)
 write.table(Emap_res[[g]][["nodeAttrs"]],file=outFile,
 sep="\t",col=TRUE,row=FALSE,quote=FALSE)
 nodeAttrFiles[[g]] <- outFile

 outFile <- sprintf("%s/%s.gmt",outDir,g)
 conn <- suppressWarnings(
 suppressMessages(base::file(outFile,"w")))
 tmp <- Emap_res[[g]][["featureSets"]]
 gmtFiles[[g]] <- outFile
 for (cur in names(tmp)) {
 curr <- sprintf("%s\t%s\t%s", cur,cur,
 paste(tmp[[cur]],collapse="\t"))
 writeLines(curr,con=conn)
 }
close(conn)
}

Finally, plot the enrichment map. This step requires Cytoscape to be installed, along with the EnrichmentMap
and AutoAnnotate apps. It also requires the Cytoscape application to be open and running on the machine
running the code. This block is commented out for automatic builds on Bioconductor, but a screenshot of the
intended result is shown below (Figure 4).

plotEmap(gmtFiles[[1]], nodeAttrFiles[[1]],
groupClusters=TRUE,hideNodeLabels=TRUE)

This example enrichment map isn’t terribly exciting because of the low number of pathway features permitted,
the upper bound on feature selection scores and low number of train/test splits in the demonstration example.

Page 13 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Here is an example of an enrichment map generated by running the above predictor with more real-world
parameter values, and all available pathways (Figure 5):

Visualize integrated patient similarity network based on top features. We apply a threshold to define the most
predictive features, and integrate these into a single patient similarity network. Such a network is useful for down-
stream operations such as ascertaining whether or not classes are significantly separated, and for visualization of
results.

Here we define predictive features as those scoring 2 out of 2 in all train/test splits.

featScores2 <- lapply(featScores, getNetConsensus)
featSelNet <- lapply(featScores2, function(x) {
 callFeatSel(x, fsCutoff=2, fsPctPass=1)
})

Figure 5. Enrichment map shows consistently high-scoring pathway features when running the breast
tumour binary classifier with real-world parameters. This network is generated by running the plotEmap()
function, which uses the RCy3 Bioconductor package to programmatically call Cytoscape network visualization
software from within R, to run the EnrichmentMap app5–7. Nodes show pathways features that scored a minimum
of 9 out of 10 in feature selection, in at least 70% of train/test splits; node fill indicates feature score. Edges connect
pathways with shared genes. The larger yellow bubbles are auto-generated by the AutoAnnotate Cytoscape
app6,8; these thematically group top pathways, by clustering and word-frequency based cluster annotation.

Figure 4. Enrichment map of top-scoring pathway features in tumour classifier example. The small number
of nodes reflects the limited number of pathways provided to the toy example model, and also reduced parameter
values for model building. See Figure 5 for an example of a more informative enrichment map produced by running
a real-world example.

Page 14 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

We next examine the features:

print(featSelNet)

$LumA
[1] "CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I.profile"
[2] "SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM.profile"
[3] "UREA_CYCLE.profile"

$notLumA
[1] "SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_
 METABOLISM.profile"
[2] "UREA_CYCLE.profile"
[3] "stage_cont.txt"

Create a new groupList limited to top features:

topPath <- gsub(".profile","",
 unique(unlist(featSelNet)))
topPath <- gsub("_cont.txt","",topPath)
create groupList limited to top features
g2 <- list();
for (nm in names(groupList)) {
 cur <- groupList[[nm]]
 idx <- which(names(cur) %in% topPath)
 message(sprintf("%s: %i pathways", nm, length(idx)))
 if (length(idx)>0) g2[[nm]] <- cur[idx]
}

BRCA_mRNAArray-20160128: 3 pathways

clinical: 1 pathways

We plot the integrated patient network based on the features selected above.

In the example below, the networks are integrated by taking the mean of the edge weights (aggFun="MEAN").
For plotting we retain only the top 5% strongest edges (topX=0.05).

By setting calcShortestPath=TRUE, the function will also compute the pairwise shortest path for within-
and across-group nodes. The result is shown as a set of violin plots and a one-sided Wilcoxon-Mann-Whitney test
is used to assign significance.

As with plotEMap(), this method must be run on a computer with Cytoscape installed and running. To bypass
plotting the PSN in Cytoscape, set plotCytoscape to FALSE. This function call computes shortest-path
distances within- and among clusters (Figure 6) and plots the integrated PSN (Figure 7). The resulting network
is shown below (Figure 7).

psn <- suppressMessages(
 plotIntegratedPatientNetwork(
 brca,
 groupList=g2,
 makeNetFunc=makeNets,
 aggFun="MEAN",topX=0.08,
 numCores=1L,calcShortestPath=TRUE,
 showStats=FALSE,
 verbose=FALSE, plotCytoscape=FALSE)
)

Page 15 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Figure 7. Integrated patient similarity network, generated by combining all networks that consistently
pass feature selection. This network is generated by calling plotIntegratedPatientNetwork() and uses RCy3 to
programmatically generate the network in Cytoscape7,8. This network uses features that scored 2 out of 2 in all train-
test splits. For visualization, only the top 8% most-distant edges are shown. Nodes are patients, and edges weights
show average similarity across all features passing feature selection. Node fills indicate patient label, with “LumA” in
green and “nonLumA” in orange.

Figure 6. Shortest pairwise patient distances within and among patient classes in the integrated network
for breast tumour classification. This visualization and statistic are useful to ascertain whether or not patients of the
same label are more similar in the integrated network; having within-class distance be significantly smaller than across-
class distance is indicative of good class separation. This graph is generated using the plotIntegratedPatientNetwork()
function. From left to right, it shows pairwise patient shortest distances: within patients of class “LumA”; between the
two class labels; within patients of the residual class “nonLumA”; and between all patients in the network.

Page 16 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

The integrated PSN can also be visualized as a tSNE plot (Figure 8).

tsne <- plot_tSNE(psn$patientSimNetwork_unpruned,colData(brca))

summary(tsne)

Length Class Mode
N 1 -none- numeric
Y 662 -none- numeric
costs 331 -none- numeric
itercosts 20 -none- numeric
origD 1 -none- numeric
perplexity 1 -none- numeric
theta 1 -none- numeric
max_iter 1 -none- numeric
stop_lying_iter 1 -none- numeric
mom_switch_iter 1 -none- numeric
momentum 1 -none- numeric
final_momentum 1 -none- numeric
eta 1 -none- numeric
exaggeration_factor 1 -none- numeric

Use case 2: Three-way classifier with clinical and three types of ‘omic data
Introduction. In this example, we will use clinical data and three types of ’omic data - gene expression, DNA
methylation and proteomic data - to classify breast tumours as being one of three types: Luminal A, Luminal B,
or Basal. This example is an extension of the one used to build a binary classifier (see Use Case 1).

We also use several strategies and definitions of similarity to create features:

• Clinical variables: Each variable (e.g. age) is its own feature; similarity is defined as normalized difference.

• Gene expression: Features are defined at the level of pathways; i.e. a feature groups genes within the pathway.
Similarity is defined as pairwise Pearson correlation.

• Proteomic and methylation data: Features are defined at the level of the entire data layer; a single feature
is created for all of proteomic data, and the same for methylation. Similarity is defined as pairwise
Pearson correlation.

Figure 8. tSNE plot of integrated patient similarity network based on features passing selection.

Page 17 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Setup. Load the netDx package.

suppressWarnings(suppressMessages(require(netDx)))

Data. For this example, we download data from The Cancer Genome Atlas through the Bioconductor
curatedTCGAData package. The fetch command automatically creates a MultiAssayExperiment object
containing the data.

suppressMessages(library(curatedTCGAData))

We use the curatedTCGAData() command to explore available data types in the breast cancer dataset.

curatedTCGAData(diseaseCode="BRCA", assays="*",dry.run=TRUE)

Title DispatchClass
31 BRCA_CNASeq-20160128 Rda
32 BRCA_CNASNP-20160128 Rda
33 BRCA_CNVSNP-20160128 Rda
35 BRCA_GISTIC_AllByGene-20160128 Rda
36 BRCA_GISTIC_Peaks-20160128 Rda
37 BRCA_GISTIC_ThresholdedByGene-20160128 Rda
39 BRCA_Methylation_methyl27-20160128_assays H5File
40 BRCA_Methylation_methyl27-20160128_se Rds
41 BRCA_Methylation_methyl450-20160128_assays H5File
42 BRCA_Methylation_methyl450-20160128_se Rds
43 BRCA_miRNASeqGene-20160128 Rda
44 BRCA_mRNAArray-20160128 Rda
45 BRCA_Mutation-20160128 Rda
46 BRCA_RNASeq2GeneNorm-20160128 Rda
47 BRCA_RNASeqGene-20160128 Rda
48 BRCA_RPPAArray-20160128 Rda

In this call we fetch only the gene expression, proteomic and methylation data; setting dry.run=FALSE initiates
the fetching of the data.

brca <- suppressWarnings(suppressMessages(
 curatedTCGAData("BRCA",
 c("mRNAArray","RPPA*","Methylation_methyl27*"),
 dry.run=FALSE)))

This next code block prepares the TCGA data. In practice this is performed once, and the resulting data is saved
before running netDx, but we run it here to see an end-to-end example.

prepare clinical variable - stage
staget <- sub("[abcd]","",sub("t","",colData(brca)$pathology_T_stage))
staget <- suppressWarnings(as.integer(staget))
colData(brca)$STAGE <- staget

exclude normal, HER2 (small num samples)
pam50 <- colData(brca)$PAM50.mRNA
idx <- union(which(pam50 %in% c("Normal-like","HER2-enriched")),
 which(is.na(staget)))
idx <- union(idx, which(is.na(pam50)))
pID <- colData(brca)$patientID
tokeep <- setdiff(pID, pID[idx])
brca <- brca[,tokeep,]
pam50 <- colData(brca)$PAM50.mRNA
colData(brca)$pam_mod <- pam50

remove duplicate names
smp <- sampleMap(brca)
for (nm in names(brca)) {
 samps <- smp[which(smp$assay==nm),]
 notdup <- samps[which(!duplicated(samps$primary)),"colname"]
 brca[[nm]] <- suppressMessages(brca[[nm]][,notdup])
}

The important thing is to create ID and STATUS columns in the sample metadata slot. netDx uses these to get
the patient identifiers and labels, respectively.

Page 18 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

pID <- colData(brca)$patientID
colData(brca)$ID <- pID
colData(brca)$STATUS <- gsub(" ","_",colData(brca)$pam_mod)

Rules to create features (patient similarity networks). We will group gene expression data by pathways and clini-
cal data by single variables. We will treat methylation and proteomic data each as a single feature, so each of those
groups will contain the entire input table for those corresponding data types.

In the code below, we fetch pathway definitions from January 2018 from a source that auto-compiles these from
curated pathway databases (http://download.baderlab.org/EM_Genesets). We choose the January 2018 source
to be consistent with earlier published work, but normally the latest source would be downloaded. We group
gene expression measures by pathways.

Grouping rules are accordingly created for the clinical, methylation and proteomic data.

groupList <- list()

genes in mRNA data are grouped by pathways
pathList <- readPathways(fetchPathwayDefinitions("January",2018))

Fetching
http://download.baderlab.org/EM_Genesets/January_01_2018/Human/symbol/Human_AllPathways_January_
01_2018_symbol.gmt

File: 182107f6006ac_Human_AllPathways_January_01_2018_symbol.gmt

Read 3028 pathways in total, internal list has 3009 entries

FILTER: sets with num genes in [10, 200]

=> 971 pathways excluded
=> 2038 left

groupList[["BRCA_mRNAArray-20160128"]] <- pathList[1:3]
clinical data is not grouped; each variable is its own feature
groupList[["clinical"]] <- list(
 age="patient.age_at_initial_pathologic_diagnosis",
 stage="STAGE"
)
for methylation generate one feature containing all probes
same for proteomics data
tmp <- list(rownames(experiments(brca)[[2]]));
names(tmp) <- names(brca)[2]
groupList[[names(brca)[2]]] <- tmp

tmp <- list(rownames(experiments(brca)[[3]]));
names(tmp) <- names(brca)[3]
groupList[[names(brca)[3]]] <- tmp

Define patient similarity for each network. We provide netDx with a custom function to generate similarity
networks (i.e. features). The first block tells netDx to generate correlation-based networks using everything but
the clinical data. This is achieved by the call:

makePSN_NamedMatrix(..., writeProfiles=TRUE,...)`

To make features from single measures using clinical data, the second block makes a slightly-modified call to
makePSN_NamedMatrix(), this time requesting the use of the normalized difference similarity metric.
This is achieved by calling:

makePSN_NamedMatrix(,...,
 simMetric="custom", customFunc=normDiff,
 writeProfiles=FALSE)

Page 19 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

http://download.baderlab.org/EM_Genesets

normDiff is a function provided in the netDx package, but the user may define custom similarity functions in
this block of code and pass those to makePSN_NamedMatrix(), using the customFunc parameter.

makeNets <- function(dataList, groupList, netDir,...) {
 netList <- c() # initialize before is.null() check
 # correlation-based similarity for mRNA, RPPA and methylation data
 # (Pearson correlation)
 for (nm in setdiff(names(groupList),"clinical")) {
 # NOTE: the check for is.null() is important!
 if (!is.null(groupList[[nm]])) {
 netList <- makePSN_NamedMatrix(dataList[[nm]],
 rownames(dataList[[nm]]),
 groupList[[nm]],netDir,verbose=FALSE,
 writeProfiles=TRUE,...)
 }
 }

 # make clinical nets (normalized difference)
 netList2 <- c()
 if (!is.null(groupList[["clinical"]])) {
 netList2 <- makePSN_NamedMatrix(dataList$clinical,
 rownames(dataList$clinical),
 groupList[["clinical"]],netDir,
 simMetric="custom",customFunc=normDiff, # custom function
 writeProfiles=FALSE,
 sparsify=TRUE,verbose=TRUE,...)
 }
 netList <- c(unlist(netList),unlist(netList2))
 return(netList)
}

Build predictor. Finally, we make the call to build the predictor.

set.seed(42) # set a custom seed to make results reproducible

location for intermediate work
set keepAllData to TRUE to not delete at the end of the
predictor run.
This can be useful for debugging.
outDir <- paste(tempdir(),"pred_output",sep=getFileSep())

numSplits <- 2L
out <- suppressMessages(
 buildPredictor(dataList=brca,groupList=groupList,
 makeNetFunc=makeNets,outDir=outDir,
 numSplits=numSplits, featScoreMax=2L, featSelCutoff=1L,
 numCores=1L)
)

function(dataList, groupList, netDir,...) {
netList <- c() # initialize before is.null() check
correlation-based similarity for mRNA, RPPA and methylation data
(Pearson correlation)
for (nm in setdiff(names(groupList),"clinical")) {
NOTE: the check for is.null() is important!
if (!is.null(groupList[[nm]])) {
netList <- makePSN_NamedMatrix(dataList[[nm]],
rownames(dataList[[nm]]),
groupList[[nm]],netDir,verbose=FALSE,
writeProfiles=TRUE,...)
}
}

make clinical nets (normalized difference)
netList2 <- c()
if (!is.null(groupList[["clinical"]])) {
netList2 <- makePSN_NamedMatrix(dataList$clinical,
rownames(dataList$clinical),
groupList[["clinical"]],netDir,
simMetric="custom",customFunc=normDiff, # custom function
writeProfiles=FALSE,
sparsify=TRUE,verbose=TRUE,...)
}

Page 20 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

netList <- c(unlist(netList),unlist(netList2))
return(netList)
}
IS_TRAIN
STATUS TRAIN TEST
Basal-like 77 20
Luminal_A 184 46
Luminal_B 101 26

Luminal_A nonpred <NA>
184 178 0

Basal-like nonpred <NA>
77 285 0

Luminal_B nonpred <NA>
101 261 0
IS_TRAIN
STATUS TRAIN TEST
Basal-like 77 20
Luminal_A 184 46
Luminal_B 101 26

Luminal_A nonpred <NA>
184 178 0

Basal-like nonpred <NA>
77 285 0

Luminal_B nonpred <NA>
101 261 0

Compute accuracy for three-way classification:

Average accuracy
st <- unique(colData(brca)$STATUS)
acc <- matrix(NA,ncol=length(st),nrow=numSplits)
colnames(acc) <- st
for (k in 1:numSplits) {
 pred <- out[[sprintf("Split%i",k)]][["predictions"]];
 tmp <- pred[,c("ID","STATUS","TT_STATUS","PRED_CLASS",
 sprintf("%s_SCORE",st))]
 for (m in 1:length(st)) {
 tmp2 <- subset(tmp, STATUS==st[m])
 acc[k,m] <- sum(tmp2$PRED==tmp2$STATUS)/nrow(tmp2)
 }
}
print(round(acc*100,2))

Luminal_A Basal-like Luminal_B
[1,] 57.14 100 28.57
[2,] 58.62 100 45.00

On examining the confusion matrix above, we can see that the model perfectly classifies basal tumours, but
performs poorly in distinguishing between the two types of luminal tumours. This performance is unsurprising
because luminal and basal tumours have different molecular characteristics, with the latter being ER- tumours; in con-
trast, both Luminal A and B are both types of ER+ tumours9.

res <- out$Split1$predictions
print(table(res[,c("STATUS","PRED_CLASS")]))

PRED_CLASS
STATUS Basal-like Luminal_A
Basal-like 14 0
Luminal_A 4 16
Luminal_B 4 6
PRED_CLASS
STATUS Luminal_B
Basal-like 0
Luminal_A 8
Luminal_B 4

Page 21 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Use case 3: Binary classifier using sparse genetic data and pathway-level features
netDx natively handles missing data, making it suitable to build predictors with sparse genetic data such as somatic
DNA mutations, frequently seen in cancer, and from DNA copy number variations (CNVs). netDx handles missing
data at two levels. First, netDx uses patient similarity networks, not input data, as its features. Missing data can
be handled by the similarity metric used to make this conversion. e.g. If similarity is defined as the Pearson cor-
relation between gene expression measures at the pathway level, then omitting missing genes from the correlation
calculation still allows the correlations, and thus the pathway-level network, to be computed. Where patients are
missing a particular feature, the network integration step uses what information it has. For example, in a scenario
where the data consist of transcriptomic and proteomic measures, if a patient is missing transcriptomic data, the
integration step will use only the proteomic data (network edges) for that patient.

This example demonstrates how to use netDx to build a predictor from sparse genetic data. Here we build a case/
control classifier for autism spectrum disorder (ASD) diagnosis, starting from rare CNVs; for this, we use data from
Pinto et al.10. The design for this predictor is shown in Figure 9.

Design and adapting the algorithm for sparse event data. In this design, we group CNVs by pathways. The
logic behind the grouping is prior evidence showing that genetic events in diseases tend to converge on cellular
processes of relevance to the pathophysiology of the disease10.

Figure 9. Predictor design for binary classification of case/control diagnosis in netDx, starting from rare
CNVs. CNVs are grouped into pathway-level features and patient similarity is binary; i.e. two patients have similarity
of one if they share CNVs in genes from the same pathway. Feature selection is iteratively performed on independent
thirds of the sample set. This design uses an additional label enrichment step that precedes feature selection. Label
enrichment filters out networks with insufficient bias towards case-case edges, using a label-based permutation
approach. Networks with significant label enrichment are used in feature selection. Scores from all three feature-
selection splits are added to get a final score for each feature, with a maximum attainable score of 30. Test patients are
classified as cases if they carry a CNV in a pathway that passes feature selection.

Page 22 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Binary similarity and label enrichment
In this design, similarity is defined as a binary function, a strategy that has advantages and drawbacks. In plain
terms, if two patients share a mutation in a pathway, their similarity for that pathway is 1; otherwise it is zero.
This binary definition, while conceptually intuitive, increases the false positive rate in the netDx feature selec-
tion step. That is, networks with even a single case sample will get a high feature score, regardless of whether
that network is enriched for case samples.

To counter this problem, we introduce a label-enrichment step in the feature selection. A bias measure is first
computed for each network, such that a network with only cases scores +1; one with only controls scores -
1; and one with an equal number of both has a score of zero. Label-enrichment compares the bias in each real
network, to the bias in that network in label-permuted data. It then assigns an empirical p-value for the pro-
portion of times a label-permuted network has a bias as high as the real network. Only networks with a
p-value below a user-assigned threshold (default: 0.07) pass label-enrichment, and feature selection is lim-
ited to these networks. In netDx, label-enrichment is enabled by setting enrichLabels=TRUE in the call to
buildPredictor_sparseGenetic().

Cumulative feature scoring
The other difference between this design and those with non-sparse data, is the method of scoring features
(Figure 9). The user specifies a parameter which indicates the number of times to split the data and run feature
selection. The algorithm then runs feature selection numSplits times, each time leaving 1/numSplits of
the samples out. In each split, features are scored between zero and featScoreMax, using the same approach
as is used for continuous-valued input. Feature scores are then added across the splits so that a feature can score
as high as numSplits*featScoreMax.

Evaluating model performance
For a given cutoff for features, a patient is called a “case” if they have a genetic event in pathways that pass fea-
ture selection at that cutoff; otherwise, at that cutoff, they are labelled a “control”. These calls are used to generate
the false positive and true positive rates across the various cutoffs, which ultimately generates a ROC curve.

Setup

suppressMessages(require(netDx))
suppressMessages(require(GenomicRanges))

Data. CNV coordinates are read in, and converted into a GRanges object. As always, the sample metadata table,
here the pheno object, must have ID and STATUS columns.

outDir <- sprintf("%s/200129_threeWay",tempdir())
if (file.exists(outDir)) unlink(outDir,recursive=TRUE);
dir.create(outDir)

cat("* Setting up sample metadata\n")

* Setting up sample metadata

phenoFile <- sprintf("%s/extdata/AGP1_CNV.txt",path.package("netDx"))
pheno <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)
colnames(pheno)[1] <- "ID"
head(pheno)

ID seqnames start end Gene_symbols Pathogenic STATUS
3 1020_4 chr3 4110452 4145874 no case
4 1030_3 chr10 56265896 56361311 no case
5 1030_3 chr7 64316996 64593616 ZNF92,LOC441242 no case
7 1045_3 chr3 83206919 83239473 no case
11 1050_3 chr6 57021412 57062509 KIAA1586 no case
16 1116_4 chr1 30334653 30951250 no case

cnv_GR <- GRanges(pheno$seqnames,IRanges(pheno$start,pheno$end),
 ID=pheno$ID,LOCUS_NAMES=pheno$Gene_symbols)
pheno <- pheno[!duplicated(pheno$ID),]

Page 23 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Group CNVs by pathways. The fetchPathwayDefinitions() function downloads pathway defini-
tions from baderlab.org but users may provide custom .gmt files as well. We use the BiocFileCache
package to download gene definitions for the hg18 genome build, and convert these a GRanges object. The
function mapNamedRangesToSets() is used to group this GRanges object into pathway-level sets.

pathFile <- fetchPathwayDefinitions("February",2018,verbose=TRUE)

Fetching http://download.baderlab.org/EM_Genesets/February_01_2018/Human/symbol/Human_
AllPathways_February_01_2018_symbol.gmt

pathwayList <- readPathways(pathFile)

File: f72c2f3fae_Human_AllPathways_February_01_2018_symbol.gmt

Read 3199 pathways in total, internal list has 3163 entries

FILTER: sets with num genes in [10, 200]

=> 1044 pathways excluded
=> 2119 left

suppress(Messagesrequire(BiocFileCache))
geneURL <- paste("http://download.baderlab.org/netDx/",
 "supporting_data/refGene.hg18.bed",sep="")
cache <- rappdirs::user_cache_dir(appname = "netDx")
bfc <- BiocFileCache::BiocFileCache(cache,ask=FALSE)
geneFile <- bfcrpath(bfc, geneURL)
genes <- read.delim(geneFile,sep="\t",header=FALSE,as.is=TRUE)
genes <- genes[which(genes[,4]!=""),]
gene_GR <- GRanges(genes[,1],IRanges(genes[,2],genes[,3]),
 name=genes[,4])

Group gene extents into pathway-based sets, which effectively creates grouping rules for netDx. The function
mapNamedRangesToSets() does this grouping, generating a GRangesList object.

path_GRList <- mapNamedRangesToSets(gene_GR,pathwayList)

Run predictor. Once the phenotype matrix and grouping rules are set up, the predictor is called using
buildPredictor_sparseGenetic(). Note that unlike with non-sparse data, the user does not provide
a custom similarity function in this application; currently, the only option available is the binary similarity defined
above. As discussed above, setting enrichLabels=TRUE to enable label-enrichment is highly recommended
to reduce false positive rate.

predictClass <- "case"
out <- suppressMessages(
 buildPredictor_sparseGenetic(pheno, cnv_GR, predictClass,
 path_GRList,outDir,
 numSplits=3L, featScoreMax=3L,
 enrichLabels=TRUE,numPermsEnrich=20L,
 numCores=2L)
)
TT_STATUS
STATUS TEST TRAIN
case 188 376
control 208 418
[1] 794
user system elapsed
0.681 0.234 11.180

Page 24 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.0000 -0.7143 0.2000 0.1505 1.0000 1.0000
[1] 363
Time difference of 7.545976 secs
TT_STATUS
STATUS TEST TRAIN
case 188 376
control 208 418
[1] 794
user system elapsed
0.583 0.091 9.431
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.0000 -0.6295 0.1667 0.1269 1.0000 1.0000
[1] 392
Time difference of 12.61768 secs
TT_STATUS
STATUS TEST TRAIN
case 188 376
control 210 416
[1] 792
user system elapsed
0.972 0.146 12.872
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.0000 -0.5668 0.2000 0.1523 1.0000 1.0000
[1] 484
Time difference of 16.2142 secs

Plot results. Feature selection identifies pathways that are consistently enriched for the label of interest; here, “case”
status. From the diagnostic point of view, a patient with a genetic event in a selected feature - here, a CNV in a
feature-selected pathway - is labelled a “case”. “True positives” are therefore cases with CNVs in feature-selected
pathways, while “false positives” are controls with CNVs in feature-selected pathways. These definitions are
used to compute the ROC curve below (Figure 10).

dat <- out$performance_denEnrichedNets
plot(0,0,type="n",xlim=c(0,100),ylim=c(0,100),
 las=1, xlab="False Positive Rate (%)",
 ylab="True Positive Rate (%)",
 bty='n',cex.axis=1.5,cex.lab=1.3,
 main="ROC curve - Patients in label-enriched pathways")
points(dat$other_pct,dat$pred_pct,
 col="red",type="o",pch=16,cex=1.3,lwd=2)

Figure 10. ROC curve for case-control classification in autism, using rare copy number variations (CNV)
in pathway genes. In this design, patients are classified as cases if they carry a CNV in pathways passing feature
selection, and controls otherwise. Each dot in the graph shows the sensitivity/specificity for a given cutoff for
feature selection.

Page 25 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

We can also compute the AUROC and AUPR.

tmp <- data.frame(
 score=dat$score,
 tp=dat$pred_ol,fp=dat$other_ol,
 # tn: "-" that were correctly not called
 tn=dat$other_tot - dat$other_ol,
 # fn: "+" that were not called
 fn=dat$pred_tot - dat$pred_ol)

stats <- netDx::perfCalc(tmp)
tmp <- stats$stats
message(sprintf("PRAUC = %1.2f\n", stats$prauc))

PRAUC = 0.63

message(sprintf("ROCAUC = %1.2f\n", stats$auc))

ROCAUC = 0.70

This predictor performs outperforms previous CNV-based classifiers11; in a real-world scenario this model would
need to be validated on an independent dataset. In our experience, using a combination of sparse genetic data and
binary similarity makes classifiers prone to overfitting. Measures commonly used to mitigate overfitting include
training the model on larger datasets, and larger number of train/test splits are advised.

Pathway scores are also added across the splits, for a total of 9 across the 3 splits (3 + 3 + 3).

now get pathway score
tmp <- out$cumulativeFeatScores
rownames(tmp) <- NULL
print(head(tmp))

PATHWAY_NAME SCORE
1 NEUROTRANSMITTER_RECEPTORS_AND_POSTSYNAPTIC_SIGNAL_TRANSMISSION 8
2 HUNTINGTON_DISEASE 7
3 NICOTINIC_ACETYLCHOLINE_RECEPTOR_SIGNALING_PATHWAY 6
4 BETA-CATENIN_INDEPENDENT_WNT_SIGNALING 6
5 G2_M_TRANSITION 6
6 MITOTIC_G2-G2_M_PHASES 6

As before, running the predictor with all possible pathway-related features and realistic training parameters, such
as numPermsEnrich=200L, featScoreMax=10L, numSplits=3L identifies a much richer set of themes
related to synaptic transmission and cell proliferation, consistent with the known biology of ASD as well as
those identified in the original publication10.

The nodes in Figure 11 have been reorganized to group clusters sharing a broader theme. Terms related to
neurotransmission and synaptic plasticity are in the bottom left, those related to the cell cycle and proliferation
are in the top-right, and those related to immune function are in the bottom right.

The dynamic range of feature scores is much larger as well, here ranging from 0 to 30. The resulting ROC
curve in Figure 12 accordingly has 30 cutoffs at which specificity and sensitivity are evaluated, evidenced by
30 datapoints in that curve. This is in contrast to 9 cutoffs in the ROC curve shown in Figure 10.

Use case 4: Mutation-based classifier using indirect mutations inferred from known interaction
networks
netDx provides the option of reducing the sparsity of mutation data by inferring “indirect mutations” using prior
knowledge of gene-gene interaction networks. Conceptually, the logic is that if a patient has a mutation in a
given gene, the mutation indirectly impacts interacting genes. Indirect mutation is inferred by label propagat-
ing patient mutations over a gene-gene interaction network onto neighbours. The resulting smoothed network is
then used for downstream applications. This network-based smoothing improved mutation-based tumour class
discovery in four types of cancer12. For label propagation, we use an R-based implementation of random walk
with restart, a popular strategy in bioinformatic applications12–15. The result of using this strategy on a patient’s
binary somatic mutation profile is a non-sparse profile in which genes are assigned a continuous score between

Page 26 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Figure 11. Enrichment map showing top-scoring pathway features for classifying case-control autism using
rare CNVs. Nodes show pathway features cumulatively scoring 13 or higher out of 30, while edges connect pathways
with common member genes. Node fill indicates pathway score, with yellow for the lowest and red for the highest.

Figure 12. Model performance for case-control classification of autism using rare CNVs, with greater number
of splits. Legend identical to Figure 9, except that here the graph is comprised of 30 measures because features are
scored out of 30, rather than in Figure 9, where features are scored out of 9.

zero and one, that reflects its network proximity to patient mutations. This propagation value is then ranked and
binarized, with the top-ranked fraction set to one; this fraction defaults to 3% and is tunable. The binarization serves
to limit inferred mutation to genes closest to the known mutations. For instance, genes distant from the patient’s
mutation would get a low propagation value, and would be thresholded to zero, i.e. not considered to be mutated.
The result of this step is a less sparse binary matrix, which serves as input data to the predictor.

In this example, we use direct and inferred somatic mutations to classify Testicular Germ Cell Tumours (TGCT)16
by binarized pathologic stage. As with the previous use case, we create pathway-level features to reflect that
cancer progression occurs by a combination of genes acting in molecular networks corresponding to cancer
hallmark processes such as cell proliferation and apoptosis13,17. As in Use Case 3, similarity used is the binary
function. If two patients share a mutation in a pathway, their similarity for that pathway is one; otherwise it is zero.

Page 27 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Setup

set.seed(8)
suppressWarnings(suppressMessages(require(netDx)))
suppressWarnings(suppressMessages(require(MultiAssayExperiment)))

Data. Clinical and genetic data are downloaded using the Bioconductor package curatedTCGAData. Muta-
tions are converted to a binary matrix format where rows represent genes, columns represent patients; entry [i,j] is
set to one if gene i has a somatic mutation, and zero otherwise.

genoFile <- paste(system.file("extdata",package="netDx"),
 "TGCT_mutSmooth_geno.txt",sep=getFileSep())
geno <- read.delim(genoFile,sep="\t",header=TRUE,as.is=TRUE)

phenoFile <- paste(system.file("extdata",package="netDx"),
 "TGCT_mutSmooth_pheno.txt",sep=getFileSep())

pheno <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)
rownames(pheno) <- pheno$ID

table(pheno$STATUS)

EARLY LATE
66 14

Smooth mutations over a gene interaction network. The gene-gene interaction network used in this example
contains high-confidence cancer-specific interactions18. This specific network effectively clusters tumour samples
of patients, distinguishing them by tumour type and time of survival. This is a binary symmetric network.

download example nets from remote location for vignette
require(BiocFileCache)

Loading required package: BiocFileCache

Loading required package: dbplyr

netFileURL <- paste("http://download.baderlab.org/netDx/",
 "supporting_data/CancerNets.txt",sep="")
cache <- rappdirs::user_cache_dir(appname = "netDx")
bfc <- BiocFileCache::BiocFileCache(cache,ask=FALSE)
netFile <- bfcrpath(bfc,netFileURL)
cancerNets <- read.delim(netFile,sep="\t",header=TRUE,as.is=TRUE)
head(cancerNets[,1:5])

HSPA2 RPN1 GK2 HSPA6 PPP3R1
HSPA2 0 1 1 1 1
RPN1 1 0 0 1 0
GK2 1 0 0 1 0
HSPA6 1 1 1 0 1
PPP3R1 1 0 0 1 0
DLG1 1 0 0 1 0

smoothMutations_LabelProp() is used to smooth the mutations using the provided interaction network, by
using label propagation. The output of this method is a continuous-valued network which reflects the network
proximity of the non-zero values to the original mutations.

require(doParallel)

Loading required package: doParallel

Loading required package: foreach

Loading required package: iterators

Start the node clusters for parallel propagation
smoothedMutations <- smoothMutations_LabelProp(geno,cancerNets,numCores=1L)

Page 28 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Finally, the smoothed matrix is binarized. Genes with a propagation value greater than a specified cutoff are set to
one, with the rest set to zero. This step ensures that genes which get a low propagation value are not used. Genes
with lower smoothed values reflect those farther from the original mutation, and setting these to zero signifies a
lack of confidence that these were impacted.

lessSparseMut <- thresholdSmoothedMutations(
 smoothedMutations,geno,"TGCT_CancerNets",c(20)
)

Create pathway-level features with binary patient similarity. Smoothed mutations are now grouped at the level
of biological pathways. As with other examples, pathways are downloaded from a compilation of curated pathway
databases (GMT format). Thereafter, we define pathway-level patient similarity to be binary; i.e. if two patients
share a mutation in genes from the same pathway, their mutual similarity is one; else it is zero. Individual steps
below use identical functions to those used in the first use case above.

#Setup to build the predictor
pathwayList <- readPathways(
 fetchPathwayDefinitions("January",2018)
)

Fetching http://download.baderlab.org/EM_Genesets/January_01_2018/Human/symbol/Human_
AllPathways_January_01_2018_symbol.gmt

File: 1c25416f319_Human_AllPathways_January_01_2018_symbol.gmt

Read 3028 pathways in total, internal list has 3009 entries

FILTER: sets with num genes in [10, 200]

=> 971 pathways excluded

=> 2038 left

exprdat <- SummarizedExperiment(lessSparseMut, colData=pheno)
objList <- list(genetic=exprdat)

Now we define functions for patient similarity:

makeNets <- function(dataList,groupList,netDir,numCores,...) {
 netList <- c(); netList2 <- c()

 # create genetic nets
 if (!is.null(groupList[["genetic"]])) {
 netList <- makeMutNets(dataList[["genetic"]],
 groupList[["genetic"]],
 netDir,numC=numCores)
 }
 return(netList)
}

g geno matrix, genes by patients (columns) - binary
pList list of genesets
outDir - dir where nets are to be written
makeMutNets <- function(g,pList,oDir,numC) {
 g <- t(g) # transpose to have genes as columns
 cl <- makeCluster(numC)
 registerDoParallel(cl)

 numPat <- c()
 netList <- foreach(k=1:length(pList)) %do% {
 idx <- which(colnames(g) %in% pList[[k]])

Page 29 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

 if (length(idx)>0) {
 has_mut <- rowSums(g[,idx,drop=FALSE])
 has_mutp <- names(has_mut)[which(has_mut>0)]

 if (length(has_mutp)>=6) {
 ##cat(sprintf("%s: %i patients\n", names(pList)[k],
 ## length(has_mutp)))
 #numPat <- c(numPat, length(has_mutp))
 pat_pairs <- t(combinat::combn(has_mutp,2));
 pat_pairs <- cbind(pat_pairs,1);
 outFile <- sprintf("%s/%s_cont.txt",oDir,names(pList)[k])
 write.table(pat_pairs, file=outFile,sep="\t",
 col=FALSE,row=FALSE,quote=FALSE)
 basename(outFile)
 } else NULL
 } else {
 NULL
 }
 }
 stopCluster(cl)
 unlist(netList)
}

Build predictor. Finally, we compile all the data into a MultiAssayExperiment object and as before, run the
predictor.

exprdat <- SummarizedExperiment(lessSparseMut, colData=pheno)
objList <- list(genetic=exprdat)
groupList <- list(genetic=pathwayList)
dataList <- MultiAssayExperiment(objList,pheno)

The predictor call is essentially the same as with other simpler designs:

outDir <- paste(tempdir(),randAlphanumString(),"pred_output",sep=getFileSep())
if (!file.exists(outDir)) unlink(outDir,recursive=TRUE)

out <- suppressMessages(
 buildPredictor(dataList=dataList,groupList=groupList,
 makeNetFunc=makeNets, ## custom similarity
 outDir=outDir, ## absolute path
 numCores=1L, featScoreMax=2L, featSelCutoff=2L,
 numSplits=2L,logging="none"
))

Examine output. This code collects different components of model output to examine the results.

numSplits <- 2L
st <- unique(colData(dataList)$STATUS)
acc <- c() # accuracy
predList <- list() # prediction tables

featScores <- list() # feature scores per class
for (cur in unique(st)) featScores[[cur]] <- list()

for (k in 1:numSplits) {
 pred <- out[[sprintf("Split%i",k)]][["predictions"]];
 # predictions table
 tmp <- pred[,c("ID","STATUS","TT_STATUS","PRED_CLASS",
 sprintf("%s_SCORE",st))]
 predList[[k]] <- tmp
 # accuracy
 acc <- c(acc, sum(tmp$PRED==tmp$STATUS)/nrow(tmp))
 # feature scores
 for (cur in unique(st)) {
 tmp <- out[[sprintf("Split%i",k)]][["featureScores"]][[cur]]
 colnames(tmp) <- c("PATHWAY_NAME","SCORE")
 featScores[[cur]][[sprintf("Split%i",k)]] <- tmp
 }
}

Page 30 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

Plot the AUROC and AUPR curves (Figure 13):

predPerf <- plotPerf(predList, predClasses=st)

Examine features with the highest scores. Here, these are pathways with somatic mutations that best predict
vital status:

featScores2 <- lapply(featScores, getNetConsensus)
summary(featScores2)

Length Class Mode
EARLY 3 data.frame list
LATE 3 data.frame list

featSelNet <- lapply(featScores2, function(x) {
 callFeatSel(x, fsCutoff=1, fsPctPass=0)
})
print(head(featScores2[["LATE"]]))

PATHWAY_NAME
1 1D-_I_MYO__I_-INOSITOL_HEXAKISPHOSPHATE_BIOSYNTHESIS_II__MAMMALIAN__cont.txt
2 3-PHOSPHOINOSITIDE_BIOSYNTHESIS_cont.txt
3 3-PHOSPHOINOSITIDE_DEGRADATION_cont.txt
4 ABORTIVE_ELONGATION_OF_HIV-1_TRANSCRIPT_IN_THE_ABSENCE_OF_TAT_cont.txt
5 ACTIVATED_PKN1_STIMULATES_TRANSCRIPTION_OF_AR__ANDROGEN_RECEPTOR__REGULATED_GENES_KLK2_AND_KLK3_cont.txt
6 ACTIVATED_TAK1_MEDIATES_P38_MAPK_ACTIVATION_cont.txt
Split1 Split2
1 1 NA
2 2 2
3 2 2
4 1 NA
5 2 2
6 2 1

Software updates
netDx v1.1.4 has several updates relative to the version released with the netDx methods report (v1.0.23)2. The
new netDx package supports OS X and Unix platforms. It also supports Windows systems, with the excep-
tion of those that do not have the Java executable available in the system search path. The companion R
package netDx-examples, previously used to store example data, is now deprecated. All examples are now either
contained within the netDx package or are fetched from Bioconductor using local file-caching via the FileCache
package. Major functions have been renamed to reflect their role rather than implementation, making their usage

Figure 13. Performance measures for predictor that desparsifies binary somatic mutations using a user-
provided gene-gene interaction network.

Page 31 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

more intuitive (Table 1). The current version of netDx includes a novel workflow of building a classifier from
sparse genetic data (see Use Case 3), using the function buildPredictor_sparseGenetic(). We also added
the functionality to generate an integrated patient similarity network from features passing selection. The
plotIntegratedPatientNetwork() function generates this network, computes statistics on pairwise shortest dis-
tance measures (Dijkstra distance) within and across labels, and automatically generates a network visualization in
Cytoscape.

A number of software updates were made as part of Bioconductor integration. Unlike the previous version
where all user output was written to a specific output directory, all predictor output is now returned to users as R
objects, and intermediate work is written to temporary directories by default. The turnkey predictor-building func-
tion no longer automatically generates a log file; rather, users are required to create their own log files using the
R sink() function. Functions computing model performance and plotting no longer assume a directory struc-
ture created by the model-building step. Users now set random number generator seeds at the outset, instead of
providing a seed as an input parameter to various functions. Automated network visualization in Cytoscape now
uses RCy3, for programmatic access of Cytosape from R.

Memory improvements were made to the underlying GeneMANIA network integration algorithm Java
implementation19,20, creating a modified version specifically for netDx. netDx incurs a relatively higher memory
footprint because each feature in netDx internally generates a similarity network with pairwise similarity meas-
ures. Network integration, a step in feature selection, requires keeping all these networks in memory. Certain
grouping rules also incur a greater memory footprint than others. Notably, a model with pathway-level features
converts one gene expression data matrix into ~2,000 pathway-level patient similarity networks; such a design
is less scalable in the number of nodes, than one which creates a single feature based on all gene expression.
We optimized netDx memory usage by customizing the underlying GeneMANIA Java application used for
network integration. netDx uses a modified version of the GeneMANIA implementation, which bypasses steps
not required for the netDx pipeline, such as the identifier conversion and steps involving file input/output.
Memory and computational time improvements were benchmarked by building binary classifiers for breast tumours
and schizophrenia case-control classification. The CommonMind Consortium21 dataset (downloaded from Synapse:
syn5607607) included 279 controls and 258 cases, with a total of 537 patients, with gene expression data from
the prefrontal cortex organized into pathway level features (1,735 pathways). The breast cancer data was part
of the TCGA project9, with tumour gene-expression for 348 patients, including 154 Luminal A and 194 tumours
of other subtypes, also organized into pathway-level features (1,706 pathways). In the benchmark, an approxi-
mately 70:30 split of samples was used for cross validation. We measured training time for the predictor using the
70% of samples of a single subtype. All tests were performed on an Intel Xeon @ 2.6GHz machine with 126 GB
of available RAM and 12 cores. During benchmarking, threads had a fixed amount of RAM available, with dis-
crete steps of 4 GB, 6 GB and 8 GB. Here each predictor was built using only a single core. Benchmarking
runs were parallelized using GNU parallel22, where the performance was averaged over four runs of the
10 queries for each datasets. Following improvements, memory use dropped to one-third of the original amount.
With the updated software, the CommonMind dataset also required two-thirds of the time to build the predictor, as
compared to with the original version (Table 2).

Finally, the feature selection step now provides the option of using a Monte Carlo resampling strategy for select-
ing samples for iterative feature scoring. The previous version of the software required a fraction of samples
to be held out, the fraction being directly related to the maximum feature score. The Monte Carlo resampling
approach should allow users to increase the upper-bound of feature scores, even in smaller samples.

Conclusions
The updated netDx software provides an improved user experience for clinical research applications pertain-
ing to risk stratification, treatment response, and to identify biomarkers associated with patient subtypes. Method
extensions will be required for further feature additions, such as the ability to predict continuous outcome. Clas-
sification of borderline patients could be better controlled, perhaps by a user-specified margin. Similar to
pathway-level grouping for gene expression data, other grouping strategies will be required for other types of
genomic data, such as miRNA, single nucleotide polymorphisms, and brain imaging data.

Page 32 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://www.synapse.org/#!Synapse:syn5607607

Data availability
Underlying data
Data for the autism case/control classification5 is provided as part of the netDx package.

Data for the breast cancer example is from The Cancer Genome Atlas9,23. They are fetched from the
curatedTCGAData package which is maintained by the Bioconductor repository.

netDx vignettes are available at: https://bioconductor.org/packages/release/bioc/html/netDx.html

Software availability
netDx is available from Bioconductor: http://bioconductor.org/packages/devel/bioc/html/netDx.html

Source code available from: https://github.com/BaderLab/netDx.

Archived source code at time of publication: http://doi.org/10.5281/zenodo.40488523.

Issue tracker: https://github.com/BaderLab/netDx/issues

License: MIT License

Acknowledgements
We greatly appreciate the input from Marcel Ramos and the Bioconductor core development team in guid-
ing the software development for integration of netDx with Bioconductor. CommonMind data were generated as
part of the CommonMind Consortium supported by funding from Takeda Pharmaceuticals Company Limited, F.
Hoffmann-La Roche Ltd and NIH grants R01MH085542, R01MH093725, P50MH066392, P50MH080405,
R01MH097276, RO1-MH-075916, P50M096891, P50MH084053S1, R37MH057881, AG02219, AG05138,
MH06692, R01MH110921, R01MH109677, R01MH109897, U01MH103392, and contract HHSN271201300031C
through IRP NIMH. Brain tissue for the study was obtained from the following brain bank collections: the Mount
Sinai NIH Brain and Tissue Repository, the University of Pennsylvania Alzheimer’s Disease Core Center, the
University of Pittsburgh NeuroBioBank and Brain and Tissue Repositories, and the NIMH Human Brain Collection
Core. CMC Leadership: Panos Roussos, Joseph Buxbaum, Andrew Chess, Schahram Akbarian, Vahram
Haroutunian (Icahn School of Medicine at Mount Sinai), Bernie Devlin, David Lewis (University of Pittsburgh),
Raquel Gur, Chang-Gyu Hahn (University of Pennsylvania), Enrico Domenici (University of Trento), Mette
A. Peters, Solveig Sieberts (Sage Bionetworks), Thomas Lehner, Stefano Marenco, Barbara K. Lipska (NIMH).

Table 2. Benchmarking performance improvement for netDx. Computation
times are averaged over four runs of the same ten queries for feature-scoring
one patient label, while limiting the executable to a single core. All tests were
performed on an Intel Xeon @ 2.6GHz machine with 126GB of available RAM and
12 cores.

JavaMemory setting Previous runtime (s)
v0.99

Current runtime (s)
with percent improvement
v1.4

Breast cancer (Luminal A): 111 patients, 1706 pathway-based networks
from gene expression data

4GB 273.95 +/- 13.97 167.73 +/- 5.21 (38%)

6GB 275.11 +/- 12.35 166.89 +/- 4.81 (39%)

8GB 273.74 +/- 13.44 167.24 +/- 4.44 (39%)

Schizophrenia (case): 185 patients, 1735 pathway-based networks from
gene expression data

4GB 552.41 +/- 26.06 389.37 +/- 11.26

6GB 549.31 +/- 23.83 388.22 +/- 9.14

8GB 547.47 +/- 21.93 391.85 +/- 10.93

Page 33 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://bioconductor.org/packages/release/data/experiment/html/curatedTCGAData.html
https://bioconductor.org/packages/release/bioc/html/netDx.html
http://bioconductor.org/packages/devel/bioc/html/netDx.html
https://github.com/BaderLab/netDx
http://doi.org/10.5281/zenodo.4048852
https://github.com/BaderLab/netDx/issues
https://github.com/BaderLab/netDx/blob/master/LICENSE.md

References

1. Pai S, Bader GD: Patient Similarity Networks for Precision
Medicine. J Mol Biol. 2018; 430(18 Pt A): 2924–2938.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Pai S, Hui S, Isserlin R, et al.: netDx: interpretable patient
classification using integrated patient similarity networks.
Mol Syst Biol. 2019; 15(3): e8497.
PubMed Abstract | Publisher Full Text | Free Full Text

3. Pai S, Weber P, Giudice L, et al.: BaderLab/netDx: Freeze of code
for netDx software manuscript (Version v1.1.4). Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.4048852

4. Huber W, Carey VJ, Gentleman R, et al.: Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods.
2015; 12(2): 115–121.
PubMed Abstract | Publisher Full Text | Free Full Text

5. Merico D, Isserlin R, Stueker O, et al.: Enrichment map: a
network-based method for gene-set enrichment visualization
and interpretation. PLoS One. 2010; 5(11): e13984.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Kucera M, Isserlin R, Arkhangorodsky A, et al.: AutoAnnotate:
A Cytoscape app for summarizing networks with semantic
annotations [version 1; peer review: 2 approved]. F1000Res.
2016; 5: 1717.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Gustavsen JA, Pai S, Isserlin R, et al.: RCy3: Network biology
using Cytoscape from within R [version 2; peer review: 3
approved]. F1000Res. 2019; 8: 1774.
PubMed Abstract | Publisher Full Text | Free Full Text

8. Shannon P, Markiel A, Ozier O, et al.: Cytoscape: a software
environment for integrated models of biomolecular
interaction networks. Genome Res. 2003; 13(11): 2498–2504.
PubMed Abstract | Publisher Full Text | Free Full Text

9. Cancer Genome Atlas Network: Comprehensive molecular
portraits of human breast tumours. Nature. 2012; 490(7418):
61–70.
PubMed Abstract | Publisher Full Text | Free Full Text

10. Pinto D, Delaby E, Merico Daniele, et al.: Convergence of genes
and cellular pathways dysregulated in autism spectrum
disorders. Am J Hum Genet. 2014; 94(5): 677–694.
PubMed Abstract | Publisher Full Text | Free Full Text

11. Engchuan W, Dhindsa K, Lionel AC, et al.: Performance of
case-control rare copy number variation annotation in
classification of autism. BMC Med Genomics. 2015; 8 Suppl
1(Suppl 1): S7.
PubMed Abstract | Publisher Full Text | Free Full Text

12. Hofree M, Shen JP, Carter H, et al.: Network-based stratification
of tumor mutations. Nat Methods. 2013; 10(11): 1108–1115.
PubMed Abstract | Publisher Full Text | Free Full Text

13. Kreeger PK, Lauffenburger DA: Cancer systems biology: a
network modeling perspective. Carcinogenesis. 2010; 31(1): 2–8.
PubMed Abstract | Publisher Full Text | Free Full Text

14. Ronen J, Akalin A: netSmooth: Network-smoothing based
imputation for single cell RNA-seq [version 3; peer review: 2
approved]. F1000Res. 2018; 7: 8.
PubMed Abstract | Publisher Full Text | Free Full Text

15. Vanunu O, Magger O, Ruppin E, et al.: Associating genes and
protein complexes with disease via network propagation. PLoS
Comput Biol. 2010; 6(1): e1000641.
PubMed Abstract | Publisher Full Text | Free Full Text

16. Shen H, Shen H, Shen H, et al.: Integrated Molecular
Characterization of Testicular Germ Cell Tumors. Cell Rep. 2018;
23(11): 3392–3406.
PubMed Abstract | Publisher Full Text | Free Full Text

17. Hanahan D, Weinberg RA: Hallmarks of cancer: the next
generation. Cell. 2011; 144(5): 646–674.
PubMed Abstract | Publisher Full Text

18. Huang JK, Jia T, Carlin DE, et al.: pyNBS: a Python
implementation for network-based stratification of tumor
mutations. Bioinformatics. 2018; 34(16): 2859–2861.
PubMed Abstract | Publisher Full Text | Free Full Text

19. Warde-Farley D, Donaldson SL, Comes O, et al.: The GeneMANIA
prediction server: biological network integration for gene
prioritization and predicting gene function. Nucleic Acids Res.
2010; 38(Web Server issue): W214–220.
PubMed Abstract | Publisher Full Text | Free Full Text

20. Zuberi K, Franz M, Rodriguez H, et al.: GeneMANIA prediction
server 2013 update. Nucleic Acids Res. 2013; 41(Web Server issue):
W115–122.
PubMed Abstract | Publisher Full Text | Free Full Text

21. Fromer M, Roussos P, Sieberts SK, et al.: Gene expression
elucidates functional impact of polygenic risk for
schizophrenia. Nat Neurosci. 2016; 19(11): 1442–1453.
PubMed Abstract | Publisher Full Text | Free Full Text

22. Tange O: GNU Parallel - The Command-Line Power Tool. The
USENIX Magazine. 2011; 42–47.
Publisher Full Text

23. Ciriello G, Gatza ML, Beck AH, et al.: Comprehensive Molecular
Portraits of Invasive Lobular Breast Cancer. Cell. 2015; 163(2):
506–519.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 34 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

http://www.ncbi.nlm.nih.gov/pubmed/29860027
http://dx.doi.org/10.1016/j.jmb.2018.05.037
http://www.ncbi.nlm.nih.gov/pmc/articles/6097926
http://www.ncbi.nlm.nih.gov/pubmed/30872331
http://dx.doi.org/10.15252/msb.20188497
http://www.ncbi.nlm.nih.gov/pmc/articles/6423721
http://www.doi.org/10.5281/zenodo.4048852
http://www.ncbi.nlm.nih.gov/pubmed/25633503
http://dx.doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pmc/articles/4509590
http://www.ncbi.nlm.nih.gov/pubmed/21085593
http://dx.doi.org/10.1371/journal.pone.0013984
http://www.ncbi.nlm.nih.gov/pmc/articles/2981572
http://www.ncbi.nlm.nih.gov/pubmed/27830058
http://dx.doi.org/10.12688/f1000research.9090.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5082607
http://www.ncbi.nlm.nih.gov/pubmed/31819800
http://dx.doi.org/10.12688/f1000research.20887.2
http://www.ncbi.nlm.nih.gov/pmc/articles/6880260
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pmc/articles/403769
http://www.ncbi.nlm.nih.gov/pubmed/23000897
http://dx.doi.org/10.1038/nature11412
http://www.ncbi.nlm.nih.gov/pmc/articles/3465532
http://www.ncbi.nlm.nih.gov/pubmed/24768552
http://dx.doi.org/10.1016/j.ajhg.2014.03.018
http://www.ncbi.nlm.nih.gov/pmc/articles/4067558
http://www.ncbi.nlm.nih.gov/pubmed/25783485
http://dx.doi.org/10.1186/1755-8794-8-S1-S7
http://www.ncbi.nlm.nih.gov/pmc/articles/4315323
http://www.ncbi.nlm.nih.gov/pubmed/24037242
http://dx.doi.org/10.1038/nmeth.2651
http://www.ncbi.nlm.nih.gov/pmc/articles/3866081
http://www.ncbi.nlm.nih.gov/pubmed/19861649
http://dx.doi.org/10.1093/carcin/bgp261
http://www.ncbi.nlm.nih.gov/pmc/articles/2802670
http://www.ncbi.nlm.nih.gov/pubmed/29511531
http://dx.doi.org/10.12688/f1000research.13511.3
http://www.ncbi.nlm.nih.gov/pmc/articles/5814748
http://www.ncbi.nlm.nih.gov/pubmed/20090828
http://dx.doi.org/10.1371/journal.pcbi.1000641
http://www.ncbi.nlm.nih.gov/pmc/articles/2797085
http://www.ncbi.nlm.nih.gov/pubmed/29898407
http://dx.doi.org/10.1016/j.celrep.2018.05.039
http://www.ncbi.nlm.nih.gov/pmc/articles/6075738
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/29608663
http://dx.doi.org/10.1093/bioinformatics/bty186
http://www.ncbi.nlm.nih.gov/pmc/articles/6084608
http://www.ncbi.nlm.nih.gov/pubmed/20576703
http://dx.doi.org/10.1093/nar/gkq537
http://www.ncbi.nlm.nih.gov/pmc/articles/2896186
http://www.ncbi.nlm.nih.gov/pubmed/23794635
http://dx.doi.org/10.1093/nar/gkt533
http://www.ncbi.nlm.nih.gov/pmc/articles/3692113
http://www.ncbi.nlm.nih.gov/pubmed/27668389
http://dx.doi.org/10.1038/nn.4399
http://www.ncbi.nlm.nih.gov/pmc/articles/5083142
http://dx.doi.org/10.5281/zenodo.1146014
http://www.ncbi.nlm.nih.gov/pubmed/26451490
http://dx.doi.org/10.1016/j.cell.2015.09.033
http://www.ncbi.nlm.nih.gov/pmc/articles/4603750

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 12 February 2021

https://doi.org/10.5256/f1000research.33819.r77914

© 2021 Lê Cao K. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Kim-Anh Lê Cao
University of Melbourne, Melbourne, Australia

I am happy with these revisions, well done!

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational statistics, multi omics integration, R software development.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 09 February 2021

https://doi.org/10.5256/f1000research.33819.r77913

© 2021 Baudot A et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Judith Lambert
INSERM, MMG, Aix Marseille University, Marseille, France

Laurent Tichit
I2M, Institut de Mathématiques,, Aix Marseille University, Marseille, France

Anais Baudot
INSERM, MMG, Aix Marseille University, Marseille, France

We still obtained some errors while running the code with Linux/Windows/French locale. However,
all four use cases were running correctly using the docker image of the working environment.

Page 35 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://doi.org/10.5256/f1000research.33819.r77914
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3923-1116
https://doi.org/10.5256/f1000research.33819.r77913
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8350-1446
http://orcid.org/0000-0003-0885-7933

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Systems and Network Biology, Bioinformatics, Computational Biology.

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 25 November 2020

https://doi.org/10.5256/f1000research.29179.r73050

© 2020 Baudot A et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Anais Baudot
INSERM, MMG, Aix Marseille University, Marseille, France
Judith Lambert
INSERM, MMG, Aix Marseille University, Marseille, France

Laurent Tichit
I2M, Institut de Mathématiques,, Aix Marseille University, Marseille, France

The paper entitled “netDx: Software for building interpretable patient classifiers by multi-'omic
data integration using patient similarity networks” is a companion paper to the article “netDx:
interpretable patient classification using integrated patient similarity networks“ published in Plos
Comp Bio in 2019. Its goal is to present an updated version of the R software implementation of
netDx as a Bioconductor package.

The netDx tool proposes an approach to building a patient classifier from heterogeneous patient
data, from clinical to omics. The availability as an R package is of interest to the community. In
addition, the manuscript details 4 different uses cases that could help interest readers to apply the
tools. We however had difficulties running the code provided in the use cases and obtained
different errors and warnings, so have been in contact with the authors to try to solve the
problems. However, debugging code necessitate a lot of exchanges, and hundreds of lines of
error outputs cannot go in a peer review. These problems are not solved yet.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?

Page 36 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://doi.org/10.5256/f1000research.29179.r73050
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-0885-7933
http://orcid.org/0000-0002-8350-1446

Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: We interacted with the authors during the review process to correct warning
and errors obtained while executing the protocols of the 4 use cases

Reviewer Expertise: Systems and Network Biology, Bioinformatics, Computational Biology

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard, however we have
significant reservations, as outlined above.

Author Response 22 Dec 2020
Shraddha Pai, The Donnelly Centre, University of Toronto, Toronto, Canada

Responses are shown in bold beneath each reviewer comment, the latter shown in italics.

The paper entitled “netDx: Software for building interpretable patient classifiers by multi-'omic
data integration using patient similarity networks” is a companion paper to the article “netDx:
interpretable patient classification using integrated patient similarity networks“ published in Plos
Comp Bio in 2019. Its goal is to present an updated version of the R software implementation of
netDx as a Bioconductor package.

The netDx tool proposes an approach to building a patient classifier from heterogeneous patient
data, from clinical to omics. The availability as an R package is of interest to the community. In
addition, the manuscript details 4 different uses cases that could help interest readers to apply
the tools. We however had difficulties running the code provided in the use cases and obtained
different errors and warnings, so have been in contact with the authors to try to solve the
problems. However, debugging code necessitate a lot of exchanges, and hundreds of lines of
error outputs cannot go in a peer review. These problems are not solved yet.

Response: We thank the reviewers for taking the time and effort to work with us to
resolve these issues. There were three main sources of errors that the reviewers
encountered. The resolution for each is described below.

Page 37 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

To better support Windows users we now provide Docker images of working
environments with the latest version of netDx. The following text has been added to
the “Operation” section: “Windows users can access netDx via a Docker image
provided at https://hub.docker.com/repository/docker/shraddhapai/netdx.”

Incompatibility with French locale: The reviewers tested netDx on a system with
a French locale, which identified an unforeseen international incompatibility.
netDx uses a Java-based network integration software during feature selection.
Parts of this software would break when provided with numbers using a comma
for a decimal separator; as such they were incompatible with several non-
English locales. We have now fixed the issue in netDx v1.3.1 to ensure that all
files passed from R to Java are forced to use a period as decimal separator.

We are now able to successfully run all vignettes in a French locale; please see
https://hub.docker.com/repository/docker/shraddhapai/netdx/general (Tag:
v1.3.1_french). Note that French locale users do not have to download this
specific version of netDx; the Docker image is provided as a contained
environment with a French locale, where we have demonstrated that netDx now
works.

1.

Windows incompatibility: netDx is currently not supported on some versions of
the Windows operating system because of variation in how Java is invoked by
different Java versions. In particular, newer Windows systems do not have a
java executable available on the search path by default. We have noted this in
the current version of the manuscript.

Therefore for now we will continue to support netDx on OS X and Unix systems
in BioConductor, and will provide a Docker container for Windows users.

A working Docker image, supporting Windows and other operating systems that
support Docker, is available on Docker hub:
https://hub.docker.com/repository/docker/shraddhapai/netdx/general (Tag:
v1.3.1)

2.

Use case 4 had outdated function calls. That has been amended in the current
version of the manuscript. We also supplied the reviewers with the updated
vignette when we learnt about the error.

We hope that the resolution of the above three issues is satisfactory. We are
working with the reviewers to ensure that they are able to run the software
given the changes above.

3.

Competing Interests: We have no competing interests to declare.

Reviewer Report 29 October 2020

Page 38 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://hub.docker.com/repository/docker/shraddhapai/netdx
https://hub.docker.com/repository/docker/shraddhapai/netdx/general
https://hub.docker.com/repository/docker/shraddhapai/netdx/general

https://doi.org/10.5256/f1000research.29179.r73048

© 2020 Lê Cao K. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Kim-Anh Lê Cao
University of Melbourne, Melbourne, Australia

The authors illustrate full R workflows to apply netDx using four case studies with various ranges
of classification difficulty and data analysis settings. The netDx package proposes various ways of
grouping features, for example using known biological pathways, and several graphical outputs. I
appreciated that netDx builds on MultiAssayExperiment for easier handling of multi omics data
sets. The manuscript will be useful for readers eager to get started with netDx.
Below are some suggestions for improvement of the manuscript.

Methodological aspects:

I acknowledge that the original algorithm has been detailed in reference [2], however, the
present manuscript gives some emphasis on the ability of netDx to handle missing values. A
short statement describing how this is done would be helpful.

○

I suggest rewriting the sentence 'The final model is created by choosing features that
consistently score highly.' in the introduction. On a first read, it appeared as if there was
selection bias during the process.

○

I have some reservations regarding the representation of SEM in the AUROC figures, why
not using SD?

○

Implementation aspects:
While much effort and improvements have been done in the netDx package v1.1.4, I believe
that additional functions could be created to be user friendly. For example, many customs
functions (e.g. makeNets, the code proposed to reformat the results and calculate the
accuracy or to extract the results to Cytoscape, to list a few) could be recoded into more
generic functions. I would encourage the authors to revisit the code they propose in these
workflows and improve when possible.

○

I am not sure Table 1 column 3 (function name in v1.0.23) and part of the software update
paragraph is useful here. Presumably this could appear on the GitHub page and the NEWS
files, unless the objective of this manuscript is also to update the users of the latest
changes.

○

Minor typos:
'published' in the Introduction.○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Page 39 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

https://doi.org/10.5256/f1000research.29179.r73048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3923-1116

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational statistics, multi omics integration, R software development.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 22 Dec 2020
Shraddha Pai, The Donnelly Centre, University of Toronto, Toronto, Canada

Responses are shown in bold under corresponding reviewer comments shown in italics.

The authors illustrate full R workflows to apply netDx using four case studies with various ranges
of classification difficulty and data analysis settings. The netDx package proposes various ways of
grouping features, for example using known biological pathways, and several graphical outputs.
I appreciated that netDx builds on MultiAssayExperiment for easier handling of multi omics data
sets. The manuscript will be useful for readers eager to get started with netDx.

We thank the reviewer for their time, appreciative comments, and feedback. We also
hope the manuscript helps new users get started with netDx for classification and
data integration.

Below are some suggestions for improvement of the manuscript.
Methodological aspects:

I acknowledge that the original algorithm has been detailed in reference [2], however, the
present manuscript gives some emphasis on the ability of netDx to handle missing values.
A short statement describing how this is done would be helpful.

○

Response: Text added in introduction of use case 3:
“netDx handles missing data at two levels. First, netDx uses patient similarity
networks, not input data, as its features. Missing data can be handled by the similarity
metric used to make this conversion. e.g. If similarity is defined as the Pearson
correlation between gene expression measures at the pathway level, then omitting
missing genes from the correlation calculation still allows the correlations, and thus

Page 40 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

the pathway-level network,, to be computed. Where patients are missing a particular
feature, the network integration step uses what information it has. For example, in a
scenario where the data consist of transcriptomic and proteomic measures, if a
patient is missing transcriptomic data, the integration step will use only the
proteomic data (edges) for that patient (network edges) for that patient.”

I suggest rewriting the sentence 'The final model is created by choosing features that
consistently score highly.' in the introduction. On a first read, it appeared as if there was
selection bias during the process.

○

Response: We altered the sentence in the manuscript to: “The final model is created
from features that scored highly in feature selection, a step that uses only training
samples”.

I have some reservations regarding the representation of SEM in the AUROC figures, why
not using SD?

○

Response: We have now changed the function that plots the AUROC curve to use
standard deviation as default, and have provided the user the option of using SEM.
The corresponding figures have been updated in the manuscript to show the change
(Figure 3 and Figure 13).

Implementation aspects:

While much effort and improvements have been done in the netDx package v1.1.4, I
believe that additional functions could be created to be user friendly. For example, many
customs functions (e.g. makeNets, the code proposed to reformat the results and calculate
the accuracy or to extract the results to Cytoscape, to list a few) could be recoded into
more generic functions. I would encourage the authors to revisit the code they propose in
these workflows and improve when possible.

○

Response: We agree and will continue to create useful utility functions to make it
easier for new users to use in future releases of netDx. In order to avoid potentially
over complicating or overengineering our API, we are waiting for user feedback
before making these additions.

I am not sure Table 1 column 3 (function name in v1.0.23) and part of the software update
paragraph is useful here. Presumably this could appear on the GitHub page and the NEWS
files, unless the objective of this manuscript is also to update the users of the latest
changes.

○

Response: We agree and have removed this column from Table 1.

Minor typos:

'published' in the Introduction.○

Response: Corrected.

Competing Interests: We have no competing interests to declare.

Page 41 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 42 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021

mailto:research@f1000.com

