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The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell
type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old
mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly
all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets
that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than
inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecu-
lar processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at
https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain) provide a resource for the neuroscience community

that will facilitate additional discoveries directed towards understanding and modifying the aging process.

tissues, is the biggest risk factor for many diseases, including
several neurodegenerative and cardiovascular disorders'.
Characterizing aging-related molecular and cellular changes will
provide insights into this complex process and highlight opportuni-
ties to slow or reverse its progression, thereby helping to prevent or
treat aging-associated pathologies. That this might be achievable is
supported by a plethora of studies using model organisms, dem-
onstrating that not only lifespan but also the integrity of multiple
tissues can be regulated by discrete molecular modifications™.
Towards the goal of achieving a broader understanding of aging-
related changes and deciphering the molecular mechanisms that
accompany brain aging, transcriptomic studies in model organisms
and humans have been at the forefront of experiments. However,
these studies generally use aggregated RNA from either mixed cell
populations*, which may vary in distinct ways with age, or from
cell populations purified using known markers’~’, which themselves
may also change during aging. Therefore, despite the successful
identification of major aging-related genes and pathways, previ-
ous transcriptomic analyses have not resolved the common aging-
related changes experienced across all brain cells from those that
may be cell-type specific. Thus, there is a need to elucidate how
individual cell types are affected by aging and to clarify if the pro-
cess of aging follows a similar blueprint in all cell types or whether
certain cell types have unique transcriptional changes. This infor-
mation will be critical in determining whether aging at the tissue
level is a global process, if it results from specific changes in certain
cell populations that culminate in loss of function and deteriora-
tion, or a combination of both'. This information may also help
the design of effective aging-related therapeutics that are targeted

ﬁ ging, the time-dependent functional decline of organs and

either narrowly, affecting only certain cell types, or more broadly,
affecting all cells.

In this study, to begin to address these issues, we used single-
cell RNA sequencing to profile and compare the cellular composi-
tion and transcriptomes of young and old mouse brains. For all the
major cell populations, we provide comprehensive datasets of genes
and pathways whose transcriptional profiles change with aging. Our
computational analysis suggests that cells in the brain do not change
with aging identically, indicating that, while overlapping signatures
exist, the cellular consequences of aging are not universal. Given
that cell nonautonomous changes are also known to regulate aging-
dependent changes’, we also detail ligand-receptor interactions
among nearly all the cell types in the brain that are modified by
aging. Overall, this study provides a rich resource that can facilitate
the interrogation of the molecular underpinnings and cellular basis
of the aging process in the mouse brain.

Results
Identification of cell types. To gain new, more precise, insights into
the effects of aging, we used unbiased high-throughput single-cell
RNA sequencing (scRNA-seq) to examine the transcriptional pro-
files of young and old mouse brains (Fig. 1a). Because the dissocia-
tion of mammalian adult brains is challenging due to the complexity
of the tissue, we first developed a new dissociation protocol that
enables the isolation of healthy and intact cell suspensions that are
representative of both young and old brains (see details in Methods).
We then analyzed the transcriptomes of 50,212 single cells
(24,401 young and 25,811 old) derived from the brains of 8 young
(2-3 months) and 8 old (21-23 months) mice (Supplementary
Fig. 1-2). We first aggregated transcriptionally similar cells, using
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Fig. 1] Identification of cell types. a, Overview of the experimental workflow. b, t-Distributed stochastic neighbor embedding projection of 37,069
single-cell transcriptomes (16,028 from 8 young mouse brains and 21,041 from 8 old mouse brains). Cell clusters were color coded and annotated post
hoc based on their transcriptional profile identities (see details in Methods). ¢, t-Distributed stochastic neighbor embedding visualization of 6 major
cell populations showing the expression of representative well-known cell-type-specific marker genes. Numbers reflect the number of UMI detected
for the specified gene for each cell. d, Violin plot showing the distribution of expression levels of well-known representative cell-type-enriched marker
genes across all 25 cell types (n=37,069 cells) (see details in Methods). e, Bar plot showing the total number of detected cells and the total number
of detected genes per cell type.
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Fig. 2 | Aging-related population shifts and changes in gene expression. a, Bar plot showing the fraction of cells associated with each cell type in both
young and old brains (data present mean +s.e.m. of 8 young and 8 old brains; *FDR < 0.05 by two-tailed Mann-Whitney U-test). b, Strip chart showing
the aging-related logarithmic FCs (logFC) of all detected genes (dots) across all 25 cell types. Genes in colored dots are significantly (FDR <0.05 and
FC>10%) upregulated or downregulated with aging, as determined by MAST analysis (see details in Methods). Genes in gray are not significantly
changed with aging. ¢, Sample volcano plot for EC showing -log;,(FDR) and logFC values for all genes with highlighting for those that are significantly
upregulated (magenta dots) or downregulated (blue dots) with aging. Genes in black are not significantly changed with aging. d, Heatmap of logFC
showing a subset of aging-related genes (FDR < 0.05 and FC >10%) that are shared across many of the major cell types. Gray indicates no significant
change with aging. e, Heatmap of logFC showing a subset of aging-related genes (FDR < 0.05 and FC >10%) that are unique to each major cell type.
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an established clustering algorithm''. Next, we removed clusters
likely to be of low quality, resulting from debris, doublets/multiplets
and dead cells (Supplementary Fig. 3) and used other critical quality
control steps as described in the Methods section (Supplementary
Fig. 4). Ultimately, our analysis led to the identification of 37,069
cells (Supplementary Fig. 5a), representing 25 cell types (Fig. 1b),
with distinct expression profiles (Fig. lc,d and Supplementary
Fig. 6): oligodendrocyte precursor cells (OPC), oligodendrocytes
(OLG), olfactory ensheathing glia (OEG), neural stem cells (NSC),
astrocyte-restricted precursors (ARP), astrocytes (ASC), neuronal-
restricted precursors (NRP), immature neurons (ImmN), mature
neurons (nNEUR), neuroendocrine cells (NendC), ependymocytes
(EPC), hypendymal cells (HypEPC), tanycytes (TNC), choroid
plexus epithelial cells (CPC), endothelial cells (EC), pericytes (PC),
vascular smooth muscle cells (VSMC), hemoglobin-expressing vas-
cular cells (Hb-VC), vascular and leptomeningeal cells (VLMC),
arachnoid barrier cells (ABC), microglia (MG), monocytes (MNC),
macrophages (MAC), dendritic cells (DC) and neutrophils (NEUT).
Cell counts and other metrics for each cell type are shown in Fig. e
and Supplementary Fig. 5b-e.

Identification of cell subtypes and states. To reveal heterogeneity
within each population, we grouped the aforementioned cell types
into 6 classes based on their expression profile, lineage, function and
anatomical organization (oligodendrocyte lineage, astrocyte lin-
eage and stem cells, neuronal lineage, ependymal cells, vasculature
cells and immune cells) (Supplementary Fig. 7) and used another
round of clustering. This subsetting of the data enabled us to high-
light more subtle changes within the classes without the impact of
variation due to inclusion of drastically different cell identities. This
secondary analysis identified dozens of different cell subtypes and
states reflecting distinct functional, maturational and regional cell
identities (Supplementary Fig. 8-9). These cell identities are in line
with recent scRNA-seq studies'*"*, whose purpose was to identify
novel and distinct cell types/subtypes and create detailed atlases of
the developing and adult mouse brain (see details in Supplementary
Fig. 8). This process allowed us to generate a comprehensive data-
set of gene expression profiles for all the experimentally validated
cell populations from both young and old brains at high resolu-
tion (Supplementary Tables 1 and 2). It also permitted us to iden-
tify specific markers that distinguish each type regardless of age
(Supplementary Tables 3 and 4).

Aging-related effects on cell-to-cell transcriptional variabil-
ity and cellular composition. We found that cell identity is
largely preserved in old brains as indicated by unbiased cluster-
ing where all clusters represent cells of all animals from both ages
(Supplementary Fig. 4c). Furthermore, the quality of data generated
from both young and old cell types appears similar, with each having

RESOURCE

comparable numbers of unique molecular identifiers (UMI) and
detected genes (Supplementary Fig. 5¢,e). Next, we compared the
coefficient of variation of expression for all the transcribed genes
(Supplementary Fig. 10a), only the mitochondrially encoded genes
(Supplementary Fig. 10b) or only the ribosomal protein genes
(Supplementary Fig. 10c). We observed differences in the variabil-
ity of transcription between young and old cells in many cell types.
However, the directionality of change was not identical among cell
types, providing evidence that aging is not broadly associated with
increased transcriptional variation®.

Then, by investigating the abundance of each cell type, we found
that cellular composition was largely consistent across both young
and old brains (Fig. 2a and Supplementary Table 5). Nonetheless,
we were able to confirm the previously reported aging-related
decline of OPC', NRP" and ImmN'"'"® (Fig. 2a) and to reveal
potentially interesting but not statistically significant population
shifts within certain subtypes of OPC, OLG, ASC, nNEUR and MG
(Supplementary Fig. 11; see also Supplementary Fig. 8). Of note,
although the estimated percentages for each cell type do not neces-
sarily reflect their actual proportions in the mouse brain, mainly due
to differences in their sensitivity to tissue dissociation, the observed
changes in cell-type ratios appear to reflect a real biological effect.

Identification of aging-related genes. We then investigated the
breadth of transcriptional changes that occur in the mouse brain
with aging by performing differential gene expression (DGE)
analysis between young and old cell types and neuronal subtypes
(Supplementary Tables 6 and 7). Of the 14,699 total detected genes,
3,897 were significantly affected by aging in at least one cell type
(false-discovery rate (FDR) <0.05). When the magnitude of change
in expression was also considered, 1,113 genes passed the 10%-fold-
change (FC) threshold (Fig. 2b and Supplementary Table 8).
Interestingly, of those, 1,027 exhibited the same directionality
regardless of the cell-type identity (531 upregulated and 496 down-
regulated), while the direction of change in the expression of 86
genes was different across cell populations (discussed further below;
Supplementary Table 8). As described in the Methods section, our
ability to identify genes whose transcription changes significantly
with aging and the calculation of FC is dependent on several factors,
including the number of cells within each population, the level of
transcription and the algorithm for analysis.

Identification of shared and cell-type specific aging signatures.
To ensure the validity of these aging signatures, we first started
broadly and compared our data with past transcriptomic studies
of the mouse aging brain**. To more effectively compare datasets,
we aggregated all of our sequenced cells, thereby recreating a tradi-
tional whole-brain profile similar to what might be observed with
bulk sequencing (Supplementary Tables 2 and 6). As expected, this

>
>

Fig. 3 | Validation of shared and cell-type-specific aging-related gene expression changes. a, Violin plots with boxplots overlaid with data in TPM from
our scRNA-seq across all cells derived from each brain (n=16 brains; 8 young and 8 old) (left) and RNAscope in situ hybridization images of mouse
hippocampi (middle) showing the aging-related upregulation of the ribosomal protein gene Rpl6 and of the IncRNAs MalatT and Meg3. Scatter plots (right)
showing the quantification of the RNAscope data (data presents mean +s.e.m. of 3 young and 3 old brains for Rpl6 and Malat1 and of 4 young and 4 old
brains for Meg3; *P=0.0279 for Rpl6, **P=0.0082 for Malat1, **P=0.0045 for Meg3 by two-tailed Welch's t-test). Scale bar, 20 pm. b, Heatmap showing
the FCs of a few representative significantly (FDR < 0.05) aging-related genes in MG, EC and ASC as identified by our scRNA-seq (left) and verified by
both bulk RNA-seq (middle) and gRT-PCR (right) on sorted CD11b* (MG), CD31* (EC) and ACSA-2* (ASC) cells. Gray indicates no aging-related gene
expression changes in the sequencing data; consequently, these genes were not analyzed by qRT-PCR. For the qRT-PCR experiments, data presents

mean = s.e.m. of 3-9 young and 3-10 old brains. ¢, Scatter plots showing the significant correlations of the gene expression changes in b between the
scRNA-seq, bulk RNA-seq and gRT-PCR datasets. Linear regression is depicted by the colored line, while black dotted lines represent 95% confidence
intervals. Pearson's squared correlation coefficient (R?) and the P value are shown at the bottom right of each plot. d, Violin plots with boxplots overlaid
with data in TPM from our scRNA-seq (n=16 brains; 8 young and 8 old) (left) and immunohistochemistry images of mouse cortices (middle) showing
the aging-related upregulation of IL33 (that is mainly expressed in OLG; see Supplementary Fig. 14) and the aging-related downregulation of SPARC in
MG (IBAT* cells; indicated by arrows). Scatter plots (right) showing the quantification of the immunohistochemistry data (data presents mean+s.e.m.

of 4 young and 4 old brains; *P=0.0467 for IL33* cells, *P=0.0342 for SPARC*/IBAT* cells by two-tailed Welch's t-test). Scale bar, 50 pm.
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analysis verified previously identified aging-related genes (such data enabled us to build on these results to identify from which
as B2m, C4b, Ctss, 1133, Rpl8). Moreover, due to the increased cell types these aging signatures arose. For example, Ctss, while
sensitivity of the techniques used in our study compared to past highly transcribed in all immune cells (MG, MAC, MNC, DC;
ones, we were able to identify a set of aging-related genes not see Supplementary Table 2), was only significantly changed with
reported previously (such as Apocl, Caly, Cxcl12, Nell2, Ybx1; see  aging in MG (Supplementary Table 6). Another example is Nell2,
Supplementary Table 6). These changes could have been maskedin ~ which is mostly transcribed in neuronal lineage cells and OEG
past studies due to their limited expression levels or variations in  (Supplementary Table 2), but its levels changed with aging only in
less-abundant cell populations. Importantly, our single-cell DGE ~ OEG (Supplementary Table 6).
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Fig. 4 | Validation of bidirectional aging-related gene expression changes. a,b, Violin plots with boxplots overlaid with data in UMI from our
scRNA-seq (left) and RNAscope in situ hybridization micrographs of mouse cortices (middle) showing the aging-related downregulation of Cd9 in OPC
(Pdgfra* cells; indicated by arrows) (a) and the aging-related upregulation of the same gene in MG (Itgam™ cells; indicated by arrows) (b). Arrowheads
in b designate autofluorescence from lipofuscin granules in the lysosomes of old MG (see details in Methods). Violin plots with boxplots overlaid
(right) showing the quantification of the RNAscope data (data presents median expression of Cd9 in Pdgfra® OPC (n=529 cells from 4 young brains,
n=1,922 cells from 4 old brains) and ltgam* MG (n =841 cells from 4 young brains, n=3,058 cells from 4 old brains); ****P < 0.0001 by two-tailed
Mann-Whitney U-test). Scale bar, 2 pm. ¢,d, Violin plots with boxplots overlaid with data in UMI from our scRNA-seq (left) and RNAscope in situ
hybridization micrographs of mouse cortices (middle) showing the aging-related downregulation of the ribosomal protein gene Rps23 in OPC (¢) and
the aging-related upregulation of the same gene in MG (d). As in b, arrowheads in d designate autofluorescence from lipofuscin granules. Dotted lines
outline the area of each cell that was considered for quantification (see details in Methods). Violin plots with boxplots overlaid (right) showing the
quantification of the RNAscope data (data presents median expression of Rps23 in Pdgfra* OPC (n=1,012 cells from 4 young brains, n=2,483 cells
from 4 old brains) and Itgam*™ MG (n=1,234 cells from 4 young brains, n= 2,237 cells from 4 old brains); ****P < 0.0001 by two-tailed Mann-Whitney

U-test). Scale bar, 2 pm.

We then focused our analysis on 11 major cell populations
that exhibited the greatest number of differentially regulated genes
(Fig. 2b). By comparing the DGE data from these populations
(Fig. 2c and Supplementary Fig. 12), we were able to distinguish
both shared and cell-type-specific aging signatures. Supplementary
Table 8 presents a matrix that specifies the genes that changed
significantly in each cell type.
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Figure 2d presents selected top aging-related genes that are
shared across multiple cell types. The majority of the most com-
monly aging-upregulated genes were ribosomal protein genes
(such as Rpl6), IncRNA genes (such as Malatl) and immunoregu-
latory/inflammatory genes (such as B2m). The most commonly
aging-downregulated genes were mitochondrial respiratory chain
complex genes (such as mt-Nd1), glycolysis-related genes (such as
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Aldoc) and genes encoding selenoproteins (such as SepwI) (see also
Supplementary Table 8).

A subset of genes representing cell-type-specific aging signatures
are highlighted in Fig. 2e. Interestingly, these data revealed that cer-
tain genes that are traditionally used as cell-type-specific markers
change with aging, such as the decrease of Mog in OLG and CsflIr
in MG, and the increase of Cxcl12 in EC. Conversely, we observed
that other classic cell-type marker genes change with aging in other
cell populations. For example, Gfap, which is highly transcribed and
enriched in the astrocyte lineage and stem cells (Supplementary
Table 2), was found as one of the genes that increased the most in
EPC (Fig. 2e and Supplementary Tables 6 and 8).

We next sought to validate certain shared and cell-type unique
aging-related gene expression changes. As shown in Fig. 3a, we
were able to verify transcriptional changes in the shared aging-
related genes Rpl6, Malatl and Meg3 by in situ hybridization. We
also confirmed the cell-type specific aging-related changes of genes
such as Csflr, Cxcl12 and Sparc by bulk RNA-seq and quantitative
reverse-transcription PCR (qRT-PCR analysis) of fluorescence-
activated cell sorting (FACS)-purified CD31* (EC), CD11b* (MG)
and ACSA-2* (ASC) cells (Fig. 3b,c and Supplementary Fig. 13).
Additionally, to further determine if our transcriptomic approach
faithfully captured changes at the protein level, we performed
immunohistochemistry. As shown in Fig. 3d, we indeed observed
the specific aging-related downregulation of SPARC in MG and the
global aging-related increase of IL33 that is mostly expressed by
OLG (Supplementary Fig. 14), as revealed by our scRNA-seq analy-
sis (Fig. 2e and Supplementary Table 2) and by others'>*.

Identification of bidirectional aging signatures. Analysis of our
sequencing dataset also revealed individual genes with opposite
regulation among different cell types (Supplementary Fig. 15 and
Supplementary Table 8). For example, the tetraspanin Cd9 was down-
regulated in OPC and ASC but upregulated in EC and MG. This bidi-
rectional aging signature was confirmed between OPC and MG by
dual fluorescence in situ hybridization (Fig. 4a,b). Another example
of bidirectional changes with aging is Cldn5, which is often used as a
marker for EC, but it is also highly transcribed in OEG (Supplementary
Table 2). We found aging-related downregulation of Cldn5 in EC
but upregulation in OEG (Supplementary Table 6). Notably, when
its levels were measured in the whole brain, changes were minimal
(Supplementary Tables 2 and 6), further highlighting why certain
changes were masked in previous bulk sequencing studies.

Similarly, we found large gene sets, such as ribosomal protein
genes, that were discordant between cell types (Supplementary
Fig. 15b). As mentioned above, many ribosomal protein genes
were found among the top shared aging-upregulated genes across
major cell populations (Fig. 2d and Supplementary Table 8), but a
subset of these genes also exhibited differential regulation/direc-
tionality with aging in certain cell types (Supplementary Fig. 15b).
For example, Rps23 was found to be downregulated in OPC and
ASC, but upregulated in mNEUR, EC and MG. This differential
aging-related transcriptional signature was confirmed in OPC and
MG by dual fluorescence in situ hybridization (Fig. 4c,d).

Interestingly, when we examined the expression profile of all
genes encoding ribosomal proteins across major cell populations,
we found two distinct and divergent patterns. As shown in Fig. 5a
(see also Supplementary Table 8), both OPC and ASC were found
to downregulate a fraction of their ribosomal protein genes with
aging, while the other cell types upregulated their expression. These
patterns of expression were also detected when neuronal sub-
types were compared, where GABA and GLUT neurons exhibited
upregulation of their ribosomal protein genes with aging, while
DOPA neurons exhibited downregulation (Supplementary Table 7).
To validate these broad bidirectional aging-related signatures, we
examined ribosomal protein gene expression in FACS-purified
ACSA-2* (ASC), CD31* (EC) and CD11b* (MG) cells. As shown in
Fig. 5b,c, bulk RNA-seq reproduced the scRNA-seq data for a subset
of ribosomal protein genes, highlighting their potentially distinct
responses to aging.

Identification of aging-related pathways. Next, we investigated
changesin aging-related cellular pathways and processes by perform-
ing gene set enrichment analysis (GSEA)*'. GSEA has increased sen-
sitivity compared to DGE analysis as it aggregates information from
broad sets of genes that are presumed to be functionally related. As
such, we were also able to include cell types and neuronal subtypes
with limited cell numbers that did not show significant aging-related
changes by DGE analysis. This approach revealed the existence of
many shared and cell-type specific aging-related pathways across
the examined cell populations (Fig. 6 and Supplementary Tables 9
and 10). In total, 451 pathways (1,142 GSEA terms) changed signifi-
cantly (P<0.05 and q<0.25); 234 were expressed in at least 2 cell
types, while the remaining 217 were unique for specific cell popu-
lations. Of those aging-related pathways, 339 exhibited the same
directionality regardless of cell type (195 were upregulated and 144
downregulated), while the directions of change in the remaining
112 varied across cell types (Supplementary Table 10). The most
common aging-related pathways were those associated with cel-
lular respiration, protein synthesis, inflammatory response, oxida-
tive stress and growth factor signaling (Fig. 6 and Supplementary
Table 10). As expected, GSEA showed that the aging process entails
many biological changes in mNEUR that were in common across
its major subtypes. These include the impairment of key metabolic
pathways, the dysregulation of ion homeostasis and the disruption
of neurotransmission (Supplementary Tables 9 and 10), all of which
have been well documented in the literature’.

Here, we highlight changes in EC and EPC, two understudied,
but important, brain cell populations, that form the barriers that
isolate the brain parenchyma from factors circulating in blood
and cerebrospinal fluid. GSEA showed that EC exhibit numer-
ous aging-related changes in cellular pathways, such as the induc-
tion of senescence, hypoxia signaling and response to ketone
signaling, and the reduction of xenobiotic metabolism, lipid
metabolism and hormone processing (Supplementary Fig. 16a
and Supplementary Tables 9 and 10). In EPC, there was a nota-
ble upregulation of interferon-induced signaling (Supplementary
Fig. 16b and Supplementary Tables 9 and 10) that aligns with the

>

>

Fig. 5 | Aging-related changes in the expression of ribosomal protein genes. a, Heatmap showing the logFC for all the significantly (FDR < 0.05) aging-
related ribosomal and translation-associated genes across 11 cell types, as identified by our scRNA-seq. Gray indicates no significant change with aging.
b, Heatmap of logFC showing all the significant (FDR < 0.05) aging-related ribosomal protein genes and translation-associated genes across MG, EC and
ASC as identified by our scRNA-seq (left) and further verified by bulk RNA-seq on sorted CD11b* (MG), CD31* (EC) and ACSA-2* (ASC) cells (right).
The few inconsistencies presented here more probably reflect differences in the composition of the input sorted populations used for the comparisons
(see details in the Methods section). ¢, Of note, despite the fact that only a subset of these genes was found significantly dysregulated in our bulk RNA-
seq analysis, due to lower statistical power, there is a significant correlation of the gene expression changes between the scRNA-seq and bulk RNA-seq
datasets, as shown in the scatter plot. More specifically, dots in ¢ represent all genes from the examined cell types in b. Linear regression is depicted with
the colored line, while black dotted lines represent 95% confidence intervals. Pearson’s squared correlation coefficient (R?) and P value are shown at the

bottom right of the plot.
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Fig. 6 | Aging-related changes in cellular pathways and processes. Heatmap of GSEA showing a small subset of significant (P<0.05 and g <0.25)
aging-related pathways across major cell types. Numbers in legend correspond to normalized enrichment scores (GSEA statistics; see details in Methods).
Positive normalized enrichment score values indicate upregulation, while negative normalized enrichment score values indicate downregulation.

Gray indicates no significant change with aging.

induction of certain interferon-stimulated genes (like Ifitm3) just
as found in the DGE analysis (Supplementary Tables 6 and 8). The
aging-related upregulation of interferon-stimulated genes and
other aging-induced genes was also seen by qRT-PCR in FACS-
purified EPC (Supplementary Fig. 17). This finding suggests that
an aging-induced inflammatory response may extend to these cells
and appears similar to what it has been previously reported for the
choroid plexus epithelium?.

Importantly, GSEA also points to ribosome biogenesis as a bio-
logical process exhibiting differential regulation with aging across
different cell types and neuronal subtypes, beyond what we found
with DGE analysis alone (Supplementary Tables 9 and 10). In par-
ticular, even with stringent significance criteria, the vast majority
of brain cell types was seen to exhibit an aging-related upregulation
of genes encoding ribosomal subunits, while three types of stem/
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progenitor cells (NSC, NRP, OPC) showed downregulation (Fig. 6,
Supplementary Fig. 18 and Supplementary Table 10).

Identification of aging-related changes in intercellular com-
munication. Finally, our single-cell transcriptomics data provides
the ability to explore how aging-driven changes in gene expression
might affect intercellular communication within the brain. By lever-
aging the transcriptional profiles of each cell population, we built
a comprehensive intercellular network of potential ligand-receptor
interactions among nearly all the identified brain cell types. We then
enriched this network with data from our DGE analysis to mark
all those interactions that were found to change with aging at the
ligand or receptor level.

Here we highlight the ligand-receptor changes in EC (Fig. 7),
not only because they exhibited a variety of aging-related changes,

NATURE NEUROSCIENCE | VOL 22 | OCTOBER 2019 | 1696-1708 | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

a EC ASC b e mNEUR
ligand receptor ligand receptor
Cxcl12 Q Lrp1b Cxcl12 @ O Lpib  Adusted Pvalue
Nr3ct1 Pparg >0.05
i ?g;g’i , 0.01 0 0.05
-
3/0‘1765 P4hb O 0.001 to 0.01
Rara Plat O Tgfbr2 O 0.0001 to 0.001
Vidir Itga3 O <0.0001
Plat © ltgb5 ligb5
Lrp8 Pdgfra
Ltbp4 Ldir
Itga4 Foft1 Rara log(FC_young_to_old)
C| Dcc
L?cam Sic1a5 [ 043
Pparg Egfr
Izumo4 lof2r Hspg2
Hspg2 Fgf1 Lepr
Tgfbr2 Dpp4
Itga3 Erbb2
Itga5 Lgals3bp
Pgr O Anxa2
Lgals3b, Cxcr4 Avp Cxcrd
s g Scarb1 Cd44
Anxa2 Esr1 0
Nrdat Igfer
Ryr2 Ackr3
Gabbr1 Cxcl14 Cd4
Dce Itga5
Hbegf Pdgfra Scarb1
Itgb1 Pgr
J Itgb1
Adraib g
Erbb2 Col4at Ryr2
Lp12 Pixnb2
Cd44 Z‘g)f?’b
Apoe @ Zz(:bz Ltbp4 -0.37
Ackr3 Apoe @ L8
T Lp12
ofbr1 L1
cam
Egtr Vidir
Fgfr1 Tvro3
Tyro3 Clu @ It:c‘]/av
cu@ Lro1 Nr4at
Ldlr O The
ltgav Gabbr1
Adcyap1r1 A
Tfre P
Bsg Cst3 @ Grm5
Fgfr3 Ligand Receptor
cst3 @ © Cd9 EC mNEUR
Ligand Receptor
EC ASC

Fig. 7 | Aging-related changes in intercellular communication. a,b, Aging-related ligands produced and secreted by EC with receptors expressed in ASC
(@) and aging-related ligands produced and secreted by EC with receptors expressed in mNEUR (b). In both panels, nodes represent ligands or receptors
expressed in the denoted cell type, and edges represent protein-protein interactions between them. Node color represents magnitude of DGE (logFC

as estimated by the MAST model), such that the most significantly age-upregulated genes are in magenta and age-downregulated are in blue. Node
borders indicate statistical significance of differential expression, specifically the FDR (padj) expected from the MAST analysis. Edge color represents
the sum of scaled differential expression magnitudes from each contributing node, while width and transparency are determined by the magnitude of
scaled differential expression (see details in the Methods section). These figures have been filtered such that the top 65 edges representing the most
differentially expressed node pairs are shown. Figures for these cell interactions, and all others, are available from our online interactive data viewer

accessible at http://shiny.baderlab.org/AgingMouseBrain/.

as mentioned above (Fig. 2b,c and Supplementary Fig. 16a), but
also because they possess the unique ability to interact directly
with factors synthesized in the brain and with those secreted by
peripheral tissues into the circulation. Network analysis showed
that both cystatin C (Cst3, an aging-downregulated gene) and
stromal cell-derived factor 1 (Cxcl12, an aging-upregulated gene),
which have been previously linked to multiple pathologies**, are
mediators of crosstalk between vascular cells and many brain cell
types (Fig. 7). This finding signifies that their aging-related changes
may modulate, either synergistically or separately, important,
but still-to-be-identified aging-related processes occurring in the
brain parenchyma.

Discussion

In this study, we first investigated the cellular complexity of
the mouse brain and showed that cell identity and composition is
generally maintained with aging. More specifically, we found that
the numbers of cells within most of the cell types did not change

radically with age, when quantified as a fraction of total brain cells.
Nonetheless, we did observe the previously reported aging-related
decline of certain cell populations, such as NRP"". Of note, it seems
possible that additional work focused on this issue might reveal
additional changes in subtypes of cells, particularly those occurring
in specific regions of the brain.

We then compared young and old cells and observed a notice-
able aging-related cell-to-cell transcriptional variation within cer-
tain cell populations. However, our data did not show a universal
aging-related change in transcriptional variability across all cell
types. That is, gene transcription in particular cell populations does
not necessarily become more variable with aging. This finding is
in line with Warren et al.** but in contrast to other studies that
suggested increased transcriptional variability as a common feature
of aging'**.

By aggregating all of our sequenced single cells and perform-
ing DGE analysis comparable to what was done in previous bulk
sequencing studies, we validated many of the previously identified
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aging-related genes** and extended the list to include additional
gene signatures. We then used single-cell-type DGE analyses to
reveal the primary cell type(s) generating these signatures. The
fine resolution provided by scRNA-seq further allowed us to detect
changes in specific cell populations that would otherwise be masked
by bulk sequencing techniques. More specifically, single-cell-type
DGE analyses yielded a large number of aging-related genes that
are (1) commonly regulated among cell types, (2) specific to certain
cell types and (3) discordant between cell types. To the best of our
knowledge, only a small fraction of the genes reported here have
been previously associated with brain aging.

Interestingly, our data analysis revealed different patterns of
aging across cell populations. We found that certain aging-related
genes and pathways are differentially regulated across cell types.
For example, we provide evidence that, with aging, expression of
ribosomal protein genes is regulated in opposite directions among
groups of cell types and among neuronal subtypes. Data from both
DGE and pathway analyses showed that most of the brain cell
types exhibited an aging-driven upregulation of ribosomal pro-
tein genes, while those exhibiting the opposite regulation include
important stem/progenitor cell populations. This paradoxical
bidirectional regulation of ribosomal protein genes with aging
is noteworthy.

Over the past years, it has been clearly shown that the attenuation
of protein synthesis by dietary restriction or genetic manipulation
of translation-associated genes, including those encoding ribosomal
subunits, increases the lifespan of multiple species”’. Notably, the
downregulation of ribosomal protein genes and bulk protein syn-
thesis has been long considered as a hallmark of aging?. It appears
that the aging-driven downregulation of ribosomal protein genes
had been widely accepted, mostly based on transcriptomic studies
in yeast®. However, several studies in other model organisms and
humans have presented conflicting results>~**. Zahn et al. reported
an aging-driven upregulation of ribosomal protein genes in human
brain and muscle tissues™ and, in a later study, reported an aging-
driven upregulation of ribosomal protein genes in mouse neuro-
nal tissues’ with a downregulation of the same genes in multiple
nonneuronal tissues’. Moreover, recently published transcriptomic
studies showed an aging-related downregulation of ribosomal pro-
tein genes in ASC’ and NSC** and an upregulation in MG of both
aged” and diseased brains”***. Intriguingly, a very recent study
reported increased ribosome biogenesis and activity as hallmarks
of premature aging in human fibroblasts''. A possible explanation
for this is that cells with different metabolic demands are affected
differently by aging, thus inducing alternative feedback loops to
partially compensate for loss of translational efficiency and pro-
tein synthesis. Another explanation is that certain cell populations
may start producing different types and/or levels of specialized
ribosomes* tailored to their translational needs to cope with the
metabolic changes induced by aging.

Collectively, these data indicate that the aging process may not
be identical in all cell types, which is in line with our findings and
with a recent transcriptome analysis of the Drosophila melanogaster
brain that showed a differential aging trajectory in the transcrip-
tional profile of neurons and glial cells”. In short, it is not yet clear
whether the regulation of ribosomal protein genes and other trans-
lation-associated genes is causative of aging or the consequence of
physiological changes accompanying aging, or both depending on
species, tissue and cell type. However, our work demonstrating that
ribosome biogenesis is one of the aging-related pathways that is
differentially regulated across cell types may help to reconcile
seemingly conflicting studies.

Lastly, we created a roadmap of intercellular communication in
the brain by generating detailed information on ligand-receptor
interactions that change with aging across nearly all brain cell types.
This roadmap is also of high importance as recent findings from
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our lab* and others**** have shown that certain secreted factors,
either derived from brain parenchyma or blood, are able to modu-
late brain aging, degeneration and rejuvenation. Thus, the discov-
ery of novel factors, their source, and their targets are emerging
areas of importance in the aging field’. We foresee the extension of
this network by including data from blood proteomic analyses and
transcriptomic data from both disease models and heterochronic
parabiosis experiments* that may help in identifying novel thera-
peutic targets for treating functional defects in the brain brought
on by aging and disease.

Our findings, in agreement with recent studies, highlight the
sensitivity and power of single-cell transcriptomics not only to
reveal differences in cell identities but also to reveal changes within
individual cell types after different treatments and conditions***>*,
including organismal aging®>**~****_ As single-cell sequencing
technologies continue to mature, some of the technical and experi-
mental limitations that we encountered will be improved upon.
These include (1) potential sampling problems resulting from the
enzymatic dissociation of the brain that may be overcome with
single-nuclei sequencing approaches'’; (2) potential age-associated
biases in response to dissociation, cell encapsulation and other pro-
cedures that might drive transcriptional differences between experi-
mental groups; (3) the relatively small number of cells sequenced
compared to the total size of the brain, restricting the comparative
analyses to more abundant cell populations; (4) the relatively shal-
low depth of sequencing, limiting the analysis to highly transcribed
genes; and (5) the lack of full-length splicing isoform profiling that
could be enabled with other methods*. Our data could not also
reveal potentially important aging-driven regional changes* that
may be resolved with spatial mapping sequencing approaches™
or sex-specific gene expression variations, as only whole brain
preparations of male mice were analyzed.

Nonetheless, our work identified aging-related changes in
nearly all mouse brain cell types and revealed different patterns
of aging across different populations, many of which we validated
in this study. Thus, while there may be hallmarks of aging that
occur in most cell types, such as mitochondrial dysfunction and
loss of proteostasis"**, our data argue against the hypothesis that
aging induces a single universal molecular program in all cells
and tissues'’. However, we note that the aging process may occur
gradually or in discrete steps depending on complex interactions
among cells in the brain and ways in which these interactions
modified by extrinsic factors, such as stress and exercise. Thus,
future studies exploring gene expression changes along a contin-
uum, by examining additional timepoints, will help to reveal the
precise aging trajectories for each cell and gene and to distinguish
changes that are causative of aging from those that change as a
consequence of aging.

Collectively, as a resource for the neuroscience community
and to those who study the biology of aging, we provide com-
prehensive datasets of genes, pathways and ligand-receptor inter-
actions with aging-related variation for all the mouse brain cell
types identified. We expect that, beyond the valuable explora-
tion of aging signatures and novel insights regarding the aging
process, our data will be used as a reference for a series of other
applications. For example, we showed that numerous putative
cell-specific marker genes change with aging. Thus, the purifi-
cation or investigation of cells, based on single discriminatory
markers, may be faulty in the context of aging. Similarly, our data
revealed that the transcript levels of certain housekeeping genes
change with aging in many cell types, which could confound some
quantitative analyses.

Opverall, these data will help to advance a variety of efforts towards
understanding and modulating the aging process and exploring
molecular and cellular therapeutic targets for aging-related neuro-
degenerative diseases.
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Methods

Animals. C57BL/6] mice (JAX no. 000664) were housed in the Harvard Biolabs
Animal Facility under standard conditions. All experimental procedures were
approved in advance by the Animal Care and Use Committee of Harvard
University (AEP no. 10-23) and are in compliance with federal and state laws.
Young male mice were used at 2-3 months of age, and old male mice at 21-22
months of age.

Brain tissue dissociation. Brain tissue harvest and dissociation was performed at
the same time (09:00-10:00) for each animal, thus limiting circadian variation™.
For brain tissue dissociation, we modified existing protocols and developed a

new one that enables the isolation of intact living cells from both young and old
mouse brains in less than 1h. Briefly, mice were CO, anesthetized and then rapidly
decapitated. Brains were extracted, and hindbrain regions were removed. The
remaining tissue was dissociated into single cells with the Adult Brain Dissociation
kit (Miltenyi Biotec no. 130-107-677) with these modifications: (1) the tissue was
manually dissociated following the basic steps of the protocol described in the
Neural Tissue Dissociation Kit (Miltenyi Biotec no. 130-092-628); (2) 5% (w/v)
trehalose (Sigma Aldrich no. T0167) was added in all buffers to ensure higher
cellular viability™; (3) half concentration of papain was used, and the digestion was
performed at 33-35°C; (4) the enzymatic reaction was quenched with ovomucoid
protease inhibitor, as described in the Papain Dissociation System (Worthington
no. LK003182); (5) cell clusters were removed by serial filtration through prewetted
70-pm (Falcon no. 352350) and 40-pm (Falcon no. 352340) nylon cell strainers;
(6) myelin debris and erythrocyte removal steps were omitted to prevent any bias
in the recovered cell yields; (7) all centrifugations were performed at 220g for
8min at 4°C. After dissociation, cells were kept on ice for no longer than 1h

until further processing.

Single-cell RNA sequencing. For the scRNA-seq experiments, 8 young and 8
old mouse brains were analyzed, with 2 animals killed per day. Brain cells were
processed through all steps to generate stable cDNA libraries. Briefly, after
dissociation, cells were diluted in ice-cold PBS containing 0.4% BSA at a density
of 1,000 cells pl™. For every sample, 17,400 cells were loaded into a Chromium
Single Cell 3" Chip (10x Genomics) and processed following the manufacturer’s
instructions. Then, scRNA-seq libraries were prepared with the Chromium Single
Cell 3’ Library & Gel Bead kit v2 and i7 Mutiplex kit (10X Genomics). Libraries
were pooled based on their molar concentrations. Pooled libraries were then
loaded at 2.07 pM and sequenced on a NextSeq 500 instrument (Illumina) with
26 bases for readl, 57 bases for read2 and 8 bases for Index1. Cell Ranger

(v.1.2) (10X Genomics) was used to perform sample de-multiplexing, barcode
processing and single-cell gene-UMI counting, while a digital expression matrix
was obtained for each experiment with default parameters™, mapped to the 10X
reference for mm10, v.1.2.0. After the initial sequencing, the samples in each
pool were re-pooled based on the actual number of cells detected by Cell Ranger
(Supplementary Fig. 2a), to sequence each sample to a similar depth (number
of reads/cell) (median, 40,007; Supplementary Fig. 2c). Multiple NextSeq runs
were conducted to achieve over 70% sequencing saturation as determined again
by Cell Ranger (median, 75%; Supplementary Fig. 2f).

Raw data processing and quality control for cell inclusion. Basic processing
and visualization of the scRNA-seq data were performed with the Seurat package
(v.2.3) in R (v.3.3.4)**~°°. Our initial dataset contained 50,212 cells with data

for 19,607 genes. The average numbers of UMI (nUMI) and nonzero genes
(nGene) were 2,876.70 and 1,112.56, respectively. The data were log normalized
and scaled to 10,000 transcripts per cell. Variable genes were identified with

the FindVariableGenes() function with the following parameters used to set

the minimum and maximum average expression and the minimum dispersion:
x.Jow.cutoff=0.0125, x.high.cutoff =3, y.cutoff = 0.5. Next, principal component
analysis (PCA) was carried out, and the top 20 principal components (PCs)

were stored, which is the default number in Seurat. Clusters were identified with
the FindClusters() function by use of the shared nearest neighbor modularity
optimization with a clustering resolution set to 1.6. All clusters with only one cell
were removed. This method resulted in 40 initial clusters. Data for all cells are
provided in Supplementary Fig. 3a with colors representing each of the clusters.
For initial quality-control filtering, we selectively removed entire clusters, with
the majority of cells having greater than 30% mitochondrial RNA, under 1,000
detected transcripts, or under 500 unique genes. Finally, we filtered the remaining
individual cells with the following parameters: minimum percentage mito=0,
maximum percentage mito =30%, minimum number of UMI =200, maximum
number of UMIs = 30,000, minimum number of nGene =250, and maximum
number of nGene=6,000 to exclude outliers. Finally, we removed any genes

that were only detected in fewer than 3 cells. After initial quality control, we
maintained a total of 38,244 cells and 14,699 genes. Data for all cells are provided
in Supplementary Fig. 3b with black representing excluded cells and gray the
included cells. The average nUMI, nonzero genes, percentage mitochondrial
RNA, and percentage ribosomal RNA were 3,199.12, 1,284.08, 8.33% and 6.94%,
respectively. PCA was again carried out, and the top 20 PCs were retained. The
clustering was again performed with the clustering resolution now set to 2.0.
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This method resulted in 55 initial clusters. The final preprocessing stage was to
remove likely doublet artifacts arising from the co-capture of multiple cells in

one droplet. This step occurred following an initial round of determination of
cell-type identity as described in the next section. We first searched for the top
differential markers for each identified cluster/sub-cluster using the FindMarkers()
function (Supplementary Tables 3 and 4). Then, we defined doublets/multiplets
as any cluster in which >30% of its cells express at least 5 of the top 10 genes
specific for the initially identified cell type and any other cell type outside of the
cell class it is associated with (see below for details on cell classes). These clusters
were removed from downstream analysis. Furthermore, cell clusters that were not
represented by at least half of the young and old animals were also excluded. For
example, although we detected epithelial cells (Epcam*/Krt18*) in our dataset,

we excluded them from our processing as they were detected only in two of the
eight young animals but none of the old animals. After exclusions, clustering was
again performed. Ultimately, we included 37,069 cells representing 38 clusters
(Supplementary Fig. 4).

Determination of cell-type identity. For each cell type, we used multiple cell-
type-specific/enriched marker genes that have been previously described in the
literature to determine cell-type identity. These include, but are not limited to
Pdgfra for OPC*; Cldn11 for OLG”’; Npy for OEG'**%; Thbs4 for NSC*-%*; Cd44
for ARP;*; Gjal for ASC*; Cdk1 for NRP; Sox11 for InmN®; Syt1 for mNEUR®;
Baiap3 for NendC"’; Ccdc153 for EPC*; Sspo for HypEPC'*; Rax for TNC*; Ttr
for CPC*; Cldn5 for EC; Kcnj8 for PC; Acta2 for VSMC®; Alas2 for Hb-VC**7';
Slc6al13 for VLMC'”; Sle47al for ABC'; Tmem119 for MG*; Plac8 for MNC'';
Pf4 for MAC"'; Cd209a for DC”"%; S§100a9 for NEUT”' (see Fig. 1¢,d). We then
arranged all the identified cell types based on their expression profile, lineage,
function and anatomical organization into 6 classes of cells (Supplementary Fig. 7a).
For each class, we re-clustered the subcategorized cell types following the same
strategy (top 20 PCs with a clustering resolution of 2.0). Only for the neuronal
lineage, which has an increased complexity in terms of cell subtypes, we used the
top 40 PCs to yield more separated clusters. The annotation of subclusters was
performed similarly to identification of the main cell clusters, with additional
reported cell type/subtype marker genes’™°.

DGE analysis. After initial quality-control preprocessing and determination of
cellular identities, we used the MAST package (v.1.6.1)” in R (v.3.3.4) to perform
DGE analysis. MAST generated P values, FCs and logFC (based on natural log of
the FCs), using a hurdle model with normalized nUMI as a covariate. It is worth
mentioning that due to shrinkage in the Bayes approach leveraged by MAST, we
were able to detect significance in very small changes in transcription but there was
also an underestimation of FC. This effect is especially noticeable when comparing
FC between MAST calculations and traditional TPM-based calculations for genes
with low expression levels. Additionally, the DGE techniques used here have

more power to assign significance of subtle changes in highly transcribed genes,
and therefore our results may underrepresent changes in lowly transcribed genes.
Finally, our ability to establish a baseline level of transcription is proportional

to the number of cells measured, and thus more subtle changes in abundant
populations can be deemed significant.

Pathway analysis. GSEA®' was performed to identify cellular pathways and
processes associated with aging. A