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Abstract  

Single-cell RNA sequencing (scRNA-seq) enables detailed comparisons of gene expression 

across cells and conditions. Single-cell differential expression analysis faces challenges like 

sample correlation, individual variation, and scalability. We develop a fast and scalable linear 

mixed-effects model (LMM) estimation algorithm, FLASH-MM, to address these issues. We 

reformulate aspects of the linear mixed model estimation procedure to make it faster, by reducing 

computational complexity and memory usage. Simulation studies with scRNA-seq data show that 

FLASH-MM is accurate, computationally efficient, effectively controls false positive rates, and 

maintains high statistical power in differential expression analysis. Tests on tuberculosis immune 

and kidney single cell data demonstrate FLASH-MM’s utility in accelerating single-cell differential 

expression analysis across diverse biological contexts. 

Introduction 

Differential expression (DE) analysis is a cornerstone of transcriptomics research. Single-cell 

RNA sequencing (scRNA-seq) technology enables researchers to profile the transcriptomes of 

individual cells, uncovering transcriptional similarities and differences across various biological 

conditions for specific cell types. Advancements in cost efficiency and throughput have facilitated 

the generation of large-scale datasets comprising hundreds of subjects and millions of cells, 

opening new avenues for exploring cellular heterogeneity and dynamics across diverse conditions 

and samples. Cells from the same individual share common genetic and environmental 

backgrounds, resulting in a hierarchical structure and statistical dependencies among individual 

cells in scRNA-seq data1. This introduces significant challenges for differential expression 

analysis in single-cell studies, particularly due to the correlation within cell populations of each 

subject (intra-subject correlation1) and the high variability across cell populations from different 

subjects (inter-subject variability2). Ignoring these correlations and variabilities can inflate false 

positive rates in statistical tests1,2. Furthermore, the large scale of single-cell data, often 

encompassing hundreds of thousands to millions of cells, adds computational complexity, 

requiring efficient methods to manage and analyze these vast datasets effectively. 

Linear mixed-effects models (LMMs) provide a framework to address the challenges of intra-

subject correlation and inter-subject variability in single-cell differential expression analysis by 
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incorporating fixed effects, which capture systematic differences across experimental conditions, 

and random effects, which model the correlations within subjects and the variations between 

subjects1,3–5. In multi-subject single-cell studies, cells are nested within subjects, and subjects are 

often nested within experimental conditions, meaning that cells from the same subject are 

correlated, and subjects within the same condition share common sources of variation. To 

account for this hierarchical structure, instead of modeling subjects as fixed effects, mixed models 

treat them as random effects, efficiently capturing both within-subject correlation and between-

subject variability. Many methods and software packages have been developed to fit mixed-effects 

models5–10. The most widely used package is lme46, which uses maximum likelihood11 or restricted 

maximum likelihood12 methods for model fitting. However, fitting the LMM is computationally 

demanding, particularly in large-scale single-cell datasets, where standard implementations 

struggle with memory usage and runtime constraints5–10. As a result, the performance of mixed-

effects models for single-cell DE analyses has mostly been examined through simulation studies 

involving small numbers of subjects and cells or pseudobulk methods2,13.  

To address the challenges of large-scale scRNA-seq data analysis using linear mixed-effects 

models, we developed FLASH-MM, a fast and scalable LMM estimation algorithm for single-cell 

differential expression analysis. By leveraging summary statistics, which are precomputed 

aggregate representations that capture essential information from the data without storing 

measurements for each individual cell, and by transferring the computation of high-dimension 

matrices (number of cells) to a lower dimension (numbers of covariates and random effects) in 

the model estimation step, FLASH-MM achieves both computational efficiency and significantly 

lower memory usage. Compared to the standard LMM estimation method lmer in the lme4 

package6, the FLASH-MM algorithm requires orders of magnitude less compute time and memory 

use while maintaining accuracy. We verified the accuracy, efficiency, and DE analysis 

performance of FLASH-MM using simulation studies. We simulated multi-subject multi-cell-type 

scRNA-seq datasets using real reference data based on a negative binomial (NB) distribution. 

We further demonstrate the application of FLASH-MM for case-control comparisons in a 

tuberculosis immune atlas and for cell-type-specific sex comparisons in healthy kidney data. In 

summary, FLASH-MM accelerates accurate single-cell differential expression analysis across 

diverse biological contexts, supporting the use of mixed models in large-scale, multi-subject 

single-cell studies. 

Results 

Overview of FLASH-MM 

Single-cell RNA sequencing datasets typically consist of gene expression measurements for 

thousands of genes (approximately 20,000 in humans) across tens of thousands to millions of 

cells, often collected from multiple subjects or experimental conditions. A LMM can identify 

differentially expressed genes, correcting for fixed effects, modeled as covariates such as batch, 

sex, or treatment conditions, and subjects modeled as random effects. 

We developed FLASH-MM to address the computational challenge of fitting the LMM for large-

scale scRNA-seq data by efficiently estimating LMM parameters, using maximum likelihood (ML)11 

and restricted maximum likelihood (REML)12 with a gradient descent approach (see 

Supplementary Information). Instead of directly processing large cell-level data matrices, our 

algorithm computes and operates on summary statistics, which are compact data representations, 
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without storing information for each individual cell. Specifically, FLASH-MM operates the matrix 

computation by transferring the high-dimension n x n matrices (number of cells) to the low-

dimension p x p and q x q matrices (numbers of fixed and random effects). This reformulation 

substantially reduces computational complexity from O(mn3) to O(mn(p2 + q2)), and memory 

complexity from O(mn) to O(m*max(p, q)), where m represents the number of genes, n is the 

number of cells and p and q denote the number of fixed and random effects, respectively (n > p 

and n > q). By precomputing and directly using the summary statistics as inputs, FLASH-MM 

further reduces the computational complexity to O(m(p3 + q3)), which makes LMM estimation 

independent of the number of cells and achieves both speed and memory efficiency (see Methods 

and Supplementary Information). 

With usual LMM fitting methods, variance components are constrained to be non-negative. As a 

result, the asymptotic normality of the maximum likelihood estimation of variance components at 

the null hypothesis is invalid due to the zero variance components being on the boundary of the 

parameter space. Also, the asymptotic distribution of the likelihood ratio test (LRT) statistics is a 

mixture of Chi-squared distributions, making it more difficult to model14,15. Our algorithm allows 

variance component parameters to take negative values such that the zero variance components 

are no longer on the boundary of the parameter space. Thus, the usual asymptotic properties of 

maximum likelihood estimation at the null hypothesis remain valid under regularity conditions, 

which enables the use of t-statistics or z-statistics for hypothesis testing of both fixed effects and 

variance components, and the LRT statistics asymptotically follow Chi-squared distribution. When 

the variance component parameter is positive, it suggests that the mixed-effects model is 

appropriately specified; otherwise, the random effect term may not be needed and should be 

excluded from the model. 

The FLASH-MM workflow for single-cell differential expression analysis is illustrated in Figure 1. 

Figure 1A shows the input structure of scRNA-seq data, represented as a log-transformed gene-

by-cell count matrix, where each row corresponds to a gene’s expression profile. Fixed effects 

can include variables such as log-library size, batch effects, biological conditions of interest, and 

interactions between conditions and cell types. Random effects can capture variations across 

subjects and correlations within subjects. Figure 1B outlines the linear mixed-effects model 

framework, constructed for each gene using design matrices of fixed and random effects, 

informed by prior knowledge of covariates and the biological question. Figure 1C illustrates the 

model fitting process, comprising LMM parameter estimation and hypothesis testing. Parameter 

estimation is performed using a gradient descent algorithm applied to summary statistics. 

Hypothesis testing evaluates fixed effects and their contrasts using t-statistics (see Methods and 

Supplementary Information). 

 

Simulation studies 

We validated FLASH-MM’s accuracy and computational efficiency by comparing it to the standard 

linear mixed model method lmer, implemented in the lme4 package6, using simulated scRNA-seq 

data (See Methods and Supplemental Information). We also evaluated the performance of 

FLASH-MM in single-cell DE analysis through simulations using two key criteria: (1) control of the 

Type I error rate (false positive rate, FPR) and (2) statistical power (true positive rate, TPR). These 
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metrics were compared against NEBULA5, a generalized linear mixed-effects model (GLMM) 

designed for DE analysis. 

Simulating scRNA-seq data 

Using PBMC 10X droplet-based scRNA-seq data from lupus patients16 as a reference, we 

simulated six multi-subject multi-cell-type scRNA-seq datasets with 6,000 genes and sample 

sizes ranging from 20,000 to 120,000 cells increasing by 20,000 at each step, based on a negative 

binomial (NB) distribution. Genes were randomly selected from the reference dataset, and cells 

were simulated from 25 subjects across 12 cell types under two treatment conditions. Treatments, 

cell types, and subjects were assigned randomly with equal probability. A total of 480 differentially 

expressed genes were designated, specific to a cell type (Figure S1). 

FLASH-MM has the same accuracy as lmer, but is much faster 

We first validated FLASH-MM’s accuracy and computational efficiency using simulated data by 

comparing it to the standard method, lmer, from the lme4 package6 with its default settings. The 

linear mixed model (LMM) was fit to the log-transformed counts using FLASH-MM and lmer. 

Because lmer in the lme4 package doesn’t provide p-values for hypothesis tests of coefficients, 

we computed p-values in this case by refitting the LMM by the lmer using the lmerTest package17. 

The differences in estimated variance components, coefficients, and p-values between FLASH-

MM and lmer are shown in Figure 2A. The model parameters (coefficients and variance 

components) estimated by FLASH-MM and lmer are identical up to the sixth decimal place, 

demonstrating the high accuracy of the FLASH-MM implementation. FLASH-MM demonstrates 

substantially greater computational efficiency compared to lmer with default optimizer settings, 

achieving a speedup of approximately 50-fold to 140-fold as the sample size increases from 

20,000 to 120,000 cells (Figure 2B, Table S1, measured on a 2.8 GHz Quad-Core Intel Core i7 

processor with 16 GB DDR3 RAM). These results suggest that FLASH-MM achieves 

computational efficiency, accuracy, and reliable inference in practice. 

FLASH-MM has a similar statistical performance to NEBULA, but is much faster 

We compared the performance of FLASH-MM to NEBULA, a state-of-the-art method for 

differential expression analysis of multi-subject single-cell data based on Negative Binomial and 

Poisson mixed models. We ran NEBULA on our simulated data using the arguments method='LN' 

and model='NBLMM', which specify the negative binomial lognormal mixed model- the same 

model we used to simulate scRNA-seq data above. We computed type I error using the simulated 

non-differentially expressed (non-DE) and DE genes and compared the power between the two 

methods at a sample size of 120,000 cells.  

FLASH-MM effectively controls Type I error, with p-values remaining within the expected range 

of a uniform distribution, as shown in the quantile-quantile (QQ) plot of Figure 2C. This expected 

range is represented by 95% confidence intervals, which indicate the natural variation we would 

expect if there were no true differences in gene expression. FLASH-MM p-values fall within these 

confidence intervals, suggesting that the method does not produce an excess of false positives 

(Figure 2C, Figure S2). FLASH-MM demonstrates a power comparable to NEBULA, with a 

Receiver Operating Characteristic (ROC) curve achieving an Area Under the Curve (AUC) of 0.97 
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for both FLASH-MM and NEBULA (Figure 2D, Figure S3). The t-values and p-values calculated 

by FLASH-MM and NEBULA demonstrate a strong correlation (Figure S4). However, both 

NEBULA and lmer required significantly longer runtimes compared to FLASH-MM (319 and 143 

times, respectively, at n=120,000 cells, Table S1). 

We performed additional simulation studies to further evaluate hypothesis testing performance, 

and showed: 1) The FLASH-MM t-test for fixed effects achieves type-I error control comparable 

to that of the lmerTest Satterthwaite approximation (Figure S5); and 2) FLASH-MM’s z-test and 

LRT for variance components maintain proper type-I error control (Figure S6). 

FLASH-MM supports DE analysis of diverse biological scRNA-seq data 

Kidney scRNA-seq data 

We first examined the sex variation within healthy kidney cell types using kidney scRNA-seq 

data18 (Figure 3A). The kidney data from 19 subject samples contains 14,175 genes and 27,550 

cells consisting of 19 cell types after quality control (Figure 3B). We performed a differential 

expression analysis using FLASH-MM to identify the DE genes between males and females within 

each cell type while considering the subjects as a random effect. 

Among the various cell populations, connecting tubule (CNT) cells have the highest number of 

sex-specific differentially expressed genes (200), meeting the criteria of FDR < 0.05 and |LogFC| 

> 0.5 (Figures 3C). Pathway analysis of these genes highlights distinct enrichments: male CNT 

cells show enrichment for pathways related to acid secretion, transporter activity, blood pressure 

regulation, and ion importation, whereas female CNT cells exhibit enrichment for kinase activity 

and positive regulation of receptor recycling (Figures 3D). 

On the Kidney dataset, FLASH-MM required only 1.1 minutes of runtime, whereas lmer took 

119.4 minutes under identical hardware conditions (2.8 GHz Quad-Core Intel Core i7, 16 GB 

DDR3 RAM). 

 

Tuberculosis (TB) scRNA-seq data 

We then applied FLASH-MM to single-cell transcriptomics data from 500K memory T cells from 

259 donors in a tuberculosis (TB) progression cohort19. After quality control, the large TB dataset 

contains 11,596 genes and 499,713 cells covering 29 cell states from 46 batches and 259 

individual donors. We applied FLASH-MM to identify genes associated with TB status within each 

cellular state. FLASH-MM identified a varying number of differentially expressed genes 

associated with TB progression across different cell states (Figure 4A), using a threshold of FDR 

< 0.05 and a positive effect size (i.e., upregulation in TB samples). The cell types with the highest 

number of DE genes are activated CD4+ and CD8+ T cell populations, with 1266 and 268 DE 

genes, respectively (Figures 4A and 4B). To further investigate TB-associated signatures, we 

identified the top TB-enriched genes within these two cell states (Figure 4C and 4D). Pathway 

enrichment analysis of these DE genes identifies cell-cycle pathways in activated CD4+ cells, 

while activated CD8+ cells show enrichment for pathways related to immune response, TCR-

mediated T-cell activation, and chemokine signaling (Figure 4E and 4F). 
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Notably, FLASH-MM completed the 500K T cell dataset analysis in 1.4 hours, compared to 55.6 

hours (2 days and 7.6 hours) for lmer, measured on a 2.8 GHz Quad-Core Intel Core i7 

processor with 16 GB DDR3 RAM. These results demonstrate that FLASH-MM is substantially 

more computationally efficient and thus a more practical choice for large-scale datasets. 

 

Discussion 

Differential expression analysis to detect changes in gene expression across conditions has long 

been a fundamental aspect of transcriptomics research. However, single-cell RNA sequencing 

data introduces unique statistical challenges, such as sample correlation, individual variation, and 

scalability. We developed FLASH-MM as a fast and scalable linear mixed-effects model (LMM) 

estimation algorithm to address these issues. 

Mixed-effects models are powerful tools in single-cell studies due to their ability to model intra-

subject correlations and inter-subject variabilities. Classic LMM estimation methods, like lmer in 

the lme4 package6, face limitations of speed and memory use in the analysis of large-scale 

scRNA-seq data. These limitations have encouraged researchers to use traditional bulk RNA-seq 

differential expression analysis methods with pseudobulk counts by summing reads within each 

cell type for each subject3,20. While this simplifies the analysis, it sacrifices the resolution inherent 

in single-cell data.  

To support our simulation studies, we developed a scRNA-seq simulator, implemented in the 

simuRNAseq function in the FLASH-MM software distribution, to generate multi-subject multi-cell-

type scRNA-seq data based on a negative binomial distribution (Supplemental information). 

simuRNAseq shares similarities with muscat20 and GLMsim21. Like muscat, the simulator captures 

key characteristics of real single-cell RNA-seq data by modulating zero-inflation, overdispersion, 

variance differences, cell-level library size variation, number of clusters or cell populations, and 

the number of expected differentially expressed genes (Supplemental information). However, 

both muscat and GLMsim have some limitations when used for scRNA-seq simulations. Muscat 

estimates the dispersion of the negative binomial distribution using the edgeR package, but it 

relies on only a subset of the reference data. As a result, it cannot scale to large scRNA-seq 

datasets and captures only partial information from the reference dataset. GLMsim estimates the 

coefficients and dispersion parameters of the NB model for each gene using glm.nb from the 

MASS package22. While effective, this approach is computationally intensive and limited to 

generating data of a fixed size that matches the reference data. Our scRNA-seq simulator uses 

the method-of-moments estimate (MME)23 to compute dispersion parameters for the NB 

distribution. This approach is faster, more flexible, and uses the full biological reference dataset. 

The performance of the scRNA-seq simulator, named simuRNAseq, is illustrated in Figure S7. 

Constructing design matrices for fixed and random effects is an important step in LMM-based DE 

analysis, requiring identification of the aspects of the data to be modeled, and a balance between 

reducing residual variance, avoiding overfitting, and managing collinearity among covariates24. A 

design matrix encodes variables such as sample conditions, batch effects, and cell types, 

specifying how observations are mapped to model parameters. While dataset integration methods 

(e.g., Harmony25, Seurat26) are often applied prior to modeling, mixed-effect models can directly 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

account for batch effects by modeling batches as fixed or random effects, depending on the study 

design and underlying biological question. However, in many scRNA-seq studies, samples or 

batches are perfectly confounded with experimental conditions. In such cases, including batch as 

a fixed effect may introduce collinearity and inadvertently remove the biological signal of interest. 

Mixed-effect models can address this issue by modeling the batch as a random effect. 

For single cell transcriptomics data, including library size as a fixed effect helps control p-value 

inflation and should generally be included in the model to help with normalization. In the analyses 

of the kidney and tuberculosis data, 98.8% and 99% of genes have a significant covariate of log-

library size with Bonferroni correction p-value < 0.05, respectively. Based on this empirical 

evidence, we recommend considering including the log-library size as a covariate in the mixed-

effects model. Other model design decisions should be defined by the user based on the structure 

of their data and the biological question under study. If samples are modeled as random effects, 

their number may be high (e.g. hundreds or higher) and the FLASH-MM LMM algorithm may slow 

down (Figure S8). In such cases, subsampling the data or applying dimensionality reduction 

techniques, such as PCA, on the random effects can potentially help reduce their number to 

improve computational efficiency (see Supplemental Information). When the covariates of random 

effects are highly correlated, the dimensionality reduction technique can substantially reduce the 

number of random effects. Otherwise, if the covariates of random effects are independent or 

uncorrelated, the dimensionality reduction technique would not reduce the number of random 

effects. 

FLASH-MM makes mixed models computationally feasible for large single-cell datasets. This 

scalability enables future benchmark studies to determine the optimal modeling approach in 

biologically relevant contexts such as subtle perturbations, continuous gradients, and rare cell 

populations where accounting for cell-level variation is likely important. FLASH-MM’s versatile 

framework can be extended to other data modalities, such as spatial transcriptomics and 

multiomics. Expanding its application across diverse biological data could provide opportunities 

for uncovering novel insights and facilitating integrated analyses in a wide range of research 

contexts.  

Methods 

LMM estimation and inference 

Consider the linear mixed-effects model (LMM) as expressed below27 

𝐲 = 𝐗𝛃 + 𝐙𝐛 +  𝛜                                                         (1) 

where 𝐲 is a 𝑛 × 1 vector of observed response (expression for a gene), 𝐗 is a 𝑛 × 𝑝 design matrix 

for fixed effects 𝛃, 𝐙 is a 𝑛 × 𝑞 design matrix for random effects 𝐛, and 𝛜 is a 𝑛 × 1 vector of 

residual errors. The term random effects may be a combination of various random-effect 

components, 𝐙𝐛 = 𝐙1𝐛1 + ⋯ + 𝐙K𝐛K, where 𝐙 = [𝐙1, … , 𝐙𝐾], 𝐛 = [𝐛1
𝑇 , … , 𝐛𝐾

𝑇 ]𝑇, 𝐾 is the number of 

the random-effect components, and 𝐙𝑘 is a 𝑛 × 𝑞𝑘 design matrix for the k-th component. The 

superscript 𝑇 denotes a transpose of a vector or matrix. The basic assumptions are as follows: 1) 

The design matrix 𝐗 is of full rank, satisfying conditions of estimability for the parameters; 2) The 

random vectors 𝐛𝑘 and 𝛜 are independent and follow a normal distribution, 𝐛𝑘 ∼ 𝑁(𝟎, 𝜎𝑘
2𝐈𝑞𝑘

) and 

𝛜 ∼ 𝑁(𝟎, 𝜎2𝐈𝑛). Here 𝜎𝑘
2 and 𝜎2 are unknown parameters, called variance components, 𝟎 is a 
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vector or matrix of zero elements, and 𝐈𝑛 is an 𝑛 × 𝑛 identity matrix. The random effects reflect 

variations between groups (subjects) and correlations within groups (subjects). Assumption (1) 

implies 𝑝 < 𝑛. We also assume 𝑞𝑘 < 𝑛. If 𝑞𝑘 > 𝑛, we can use principal component analysis (PCA) 

to obtain an equivalent LMM with the number of random effects less than n (see Supplementary 

Information). 

Maximum likelihood estimation (MLE) and restricted maximum likelihood (REML) are methods for 

estimating fixed effects and variance components in LMMs. MLE estimates all parameters of fixed 

effects and variance components together but can produce biased variance component 

estimates, whereas REML removes fixed effects from variance estimation, resulting in unbiased 

estimates. Both methods are asymptotically identical. Estimating variance components using 

either MLE or REML requires numerical methods, among which the iterative gradient-based 

methods are the most commonly used. 

Fast and scalable algorithm: The gradient descent methods usually have a computational 

complexity of 𝑂(𝑛3). We developed the summary statistics-based algorithm, FLASH-MM, to 

implement the gradient methods for speeding up the LMM estimation and reducing the computer 

memory usage. Instead of the individual cell-level data: 𝐗, 𝐙 and 𝐲, FLASH-MM uses the summary 

statistics: 𝐗𝑇𝐗, 𝐗𝑇𝐲, 𝐙𝑇𝐗, 𝐙𝑇𝐲 and 𝐙𝑇𝐙 to estimate the LMM parameters. FLASH-MM achieves a 

computational complexity of 𝑂(𝑛(𝑝2 + 𝑞2)), which is fast and linearly scalable with the sample 

size 𝑛. These summary statistics have a low dimension and require less computer memory. By 

precomputing and directly using the summary statistics as inputs, the algorithm complexity is 

reduced to 𝑂(𝑝3 + 𝑞3), which makes computations independent of the sample size 𝑛 (number of 

cells) and achieves both speed and memory efficiency (see Supplementary Information section 

2.1). 

scRNA-seq data typically consist of gene expression measurements for thousands of genes 

(approximately 20,000 in human) across thousands to millions of cells. In the single-cell 

differential expression analysis, the complexity of FLASH-MM is 𝑂(𝑚𝑛(𝑝2 + 𝑞2)), 𝑚 is the number 

of genes, which is linearly scalable with the number of genes. By using the pre-computed 

summary statistics as inputs, the algorithm complexity becomes 𝑂(𝑚(𝑝3 + 𝑞3)). 

Hypothesis testing: The hypothesis testing for fixed effects and variance components can be 

respectively defined as: 

𝐻0,𝑖: 𝛽𝑖 = 0  versus  𝐻1,𝑖: 𝛽𝑖 ≠ 0, 

𝐻0,𝑘: 𝜎𝑘
2 = 0  versus  𝐻1,𝑘: 𝜎𝑘

2 > 0. 

The variance components under null hypothesis, 𝜎𝑘
2 = 0, are on the boundary of the parameter 

space, in which case the MLE asymptotic normality is inappropriate. By reparameterizing the 

variance components, 𝜃𝑘 = 𝜎2𝛾𝑘, the covariance matrix, 𝐕𝛉 = 𝜎2(𝐈 + 𝛾1𝐙1𝐙1
𝑇 + ⋯ + 𝛾𝐾𝐙𝐾𝐙𝐾

𝑇 ), 

becomes positive-definite and well-defined when 𝛾𝑘 > −1/𝜆𝑚𝑎𝑥, where 𝜆𝑚𝑎𝑥 > 0, is the largest 

singular value of 𝐙𝐙𝑇or 𝐙𝑇𝐙.  Now the parameters of variance components, 𝜃𝑘, 𝑘 = 1,   ⋯ ,  𝐾 , can 

be negative. If 𝜃𝑘 > 0, 𝜎𝑘
2 = 𝜃𝑘 is definable and the mixed model is well-specified. Otherwise, the 
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term of random effects is not needed in the model. Then the hypotheses for the variance 

components are extended as: 

𝐻0,𝑘: 𝜃𝑘 ≤ 0  versus  𝐻1,𝑘: 𝜃𝑘 > 0, 

in which the zero components, 𝜃𝑘 = 0, are no longer on the boundary of the parameter space 

and the MLE normal asymptotic properties hold. Then we can use z-statistic or t-statistic for 

hypothesis testing of fixed effects and variance components. We can also test whether there are 

no random effects, that is, the variance components are equal to zero, using likelihood ratio test 

(LRT) statistic. See Supplementary Information section 1.2 for details. 

Simulation methods 

We generated the multi-subject multi-cell type scRNA-seq dataset by using reference data based 

on a negative binomial (NB) distribution. The mean of NB distribution is taken as the sample mean 

for each gene. The dispersion of NB distribution is computed by the method-of-moments estimate 

(MME)23. Compared to the maximum likelihood-based estimates, such as the glm.nb function in 

the MASS package 22, the MME is computationally simpler and performs reasonably well. See 

detailed simulation methods and performance in Supplemental Information. 

Data preprocessing and model design 

In general, we selected thresholds to be in line with typical single cell genomics projects28, as well 

as to ensure there is enough data per cell and gene for the LMM to operate on. We processed 

the data by filtering the outliers based on: total numbers of UMI counts per cell and numbers of 

detected genes (cell filtering), numbers of UMI counts per gene, and UMI counts per cell (cpc) 

(gene filtering), which are standard in the literature29, and described below for each dataset. Our 

goal was not to optimize thresholds for biological discovery, but rather to apply reasonable filters 

that balance noise reduction with data retention. 

 

Healthy human kidney atlas 

The healthy human kidney transcriptomic map18 was generated from 27,677 cells obtained from 

19 living donors (10 female and 9 male). Decontaminated raw data, processed using SoupX30, 

was provided upon request by the authors. Cells were filtered based on three criteria: the number 

of detected features (nFeature), library size, and the number of cells within each cell type (cluster).  

The number of features per cell, defined as the total number of non-zero genes, was required to 

meet a minimum threshold of 100. Library size, calculated as the total counts per cell, was 

restricted to a range of 2^9 (512) to 2^16 (65,536). Cell types with fewer than 20 cells were 

excluded, and “Podocyte” cells were removed due to their low sample size (16 cells post filtering). 

Additionally, genes were filtered based on their expression levels, where the counts per cell ratio 

had to exceed 0.005 (i.e., the total gene count divided by the number of cells had to be greater 

than 0.5%). Genes were further filtered to retain those expressed in at least 16 cells, with a 

minimum of 10 cells in each group, total counts between 2^6 (64) and 2^20 (1,048,576), and a 

counts per cell ratio above the threshold. After these filtering steps, 27,550 cells and a refined set 

of genes were retained for downstream analyses. 
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The FLASH-MM model was designed to account for both technical and biological variation. The 

model formula used was: 

 ~log(library.size) + Cell_Types_Broad + Cell_Types_Broad:sex + (1|sampleID),  

where log-transformed library size was included as a fixed effect to normalize for differences in 

sequencing depth, Cell_Types_Broad captured the cell type-specific effects, and the interaction 

term Cell_Types_Broad:sex identified sex-specific differences within each cell type. A random 

effect (1|sampleID) was added to account for inter-sample variability. 

Tuberculosis (TB) T cell scRNA-seq data 

The Tuberculosis (TB) memory T cell dataset was obtained from Nathan et al., 202119, comprising 

500,089 cells. The raw count matrix was used for preprocessing. Metadata associated with the 

cells includes donor identity, sex, batch, cluster annotations, and TB status. The dataset includes 

cells from 259 unique donors, spanning 46 batches and 29 cell clusters. In the DE analysis, we 

modeled the donors as a random effect and ignored the batch effect because the majority of 

donors were sequenced in a single batch. 

Pre-processing steps consisted of removing cells and genes to remove extreme values. Library 

sizes were assessed using a boxplot, and cells with library sizes outside the lower whisker and 

above an upper threshold of 2^15 (32,768) were removed, resulting in the retention of 499,973 

cells. Genes were filtered in two steps: first, genes expressed in fewer than 2^9 cells (512 cells) 

were excluded; second, genes with a counts-per-cell ratio less than 0.005 (i.e., total gene count 

divided by the number of cells below 0.5%) were removed. These filtering steps reduced the 

dataset to 11,596 genes and 499,973 cells, which were used for downstream analyses. 

The FLASH-MM model was designed to analyze this dataset, accounting for both technical and 

biological variations. The model formula used was: 

 ~log(library.size) + cluster_name + cluster_name:TB_status + (1|donor), 

where log-transformed library size normalized for differences in sequencing depth, cluster_name 

captured the cell type-specific effects, and the interaction term cluster_name: TB_status identified 

TB-associated differences within each cell type. A random effect (1|donor) was added to account 

for inter-donor variability. 

Pathway enrichment analysis for both the kidney and TB datasets was performed using 

gprofiler231,32 (v0.2.3), and data visualizations were generated using ggplot2 (v3.5.1). 

Data Availability 

The healthy human kidney atlas18 data files were downloaded from the UCSC Cell Browser at 

https://cells.ucsc.edu/?ds=living-donor-kidney. The Tuberculosis (TB) memory T cell dataset19 

can be accessed from the GEO with accession code GSE158769 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158769]. The stimulated PBMC 

data16 was downloaded from muscData package (Kang18_8vs8) at 

https://github.com/HelenaLC/muscData. Source data is provided as a Source Data file.  
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Code Availability 

The FLASH-MM software is openly available in both R and Python implementations, with 

example case studies, through the following repositories: 

R package (CRAN): https://cran.r-project.org/web/packages/FLASHMM/index.html 

GitHub: https://github.com/BaderLab/FLASHMM  

Python package (PyPI): https://pypi.org/project/FLASH-MM/ 

The package is distributed under the MIT License. Analysis scripts used for the case studies 

and data simulations are available at: https://github.com/BaderLab/FLASH-MM-analysis/ 

The code is archived and citable via Zenodo: https://doi.org/10.5281/zenodo.18222187 
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Main Figure Legends 

 

Figure 1. FLASH-MM workflow for single-cell differential expression analysis. A. Data: gene 

expression matrix Y = log(1 + counts), with each row corresponding to a gene’s expression profile 

and each column corresponding to a cell (gene-by-cell matrix). Metadata includes various 

variables such as log-library size, batch effects, biological conditions of interest, and interactions 

between conditions and cell types, which could be modeled as fixed effects, and individual 

subjects, which could be modeled as random effects. B. Model: the linear mixed-effects model 

(LMM) for each gene by design matrices X and Z, which are constructed based on prior 

knowledge about the covariates and the biological question. C. Model fitting: comprises LMM 

estimation and tests. LMM estimation is implemented by a gradient descent algorithm over 

summary statistics. The summary statistics are computed as XTX, XTYT, ZTX, ZTYT, and ZTZ. LMM 

tests perform hypothesis tests on the fixed effects by t-test and variance components by likelihood 

ratio test (LRT). 

 

Figure 2. Computational and statistical performance of FLASH-MM in differential 

expression analysis of simulated scRNA-seq data. A) Boxplots of differences of variance 

components, coefficients, and -log10(p-values) between FLASH-MM and lmer fitting for each of 

6,000 genes across the six simulated scRNA-seq datasets. The boxplots contain 72,000 

(=2*6000*6) values for variance components and 900,000 (=25*6000*6) values for coefficients 

and p-values. B) Computation time (in minutes) for FLASH-MM, lmer, and NEBULA across the 

six datasets with sample sizes from 20,000 to 120,000. C) QQ-plots of non-DE genes (negative 

controls) p-values for FLASH-MM and NEBULA. The grey area represents the 95% confidence 

interval, indicating the expected range under the null hypothesis. D) ROC curves for FLASH-MM 

and NEBULA. Source data are provided as a Source Data file. 

 

Figure 3. FLASH-MM identifies sex-specific variations in a healthy human kidney map. A) 

UMAP projection of the healthy human kidney transcriptomic atlas, highlighting connecting tubule 

(CNT) cells in purple. Other cell types are shown in lighter shades for contrast. B) Bar plot showing 

the proportion of male and female cells within each annotated kidney cell type. C) Volcano plot of 

differential expression between sexes within the CNT cell population. Selected genes with 

significant male or female bias are labeled. Each point represents a gene, with the x-axis showing 

the sex-specific log fold change (logFC) and the y-axis showing −log10(p-value). Genes 

significantly upregulated in males or females (adjusted p-value < 0.05 and |logFC| > 0.5) are 

colored in blue and pink, respectively. A subset of the top male-biased and female-biased genes 

(ranked by effect size) are labeled to minimize visual overlap. Differential expression between 

male and female CNT cells was tested gene-wise using a linear mixed-effects model of the form 
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expression ~ log(library.size) + Cell_Types_Broad + Cell_Types_Broad:sex + (1|sampleID); P 

values correspond to two-sided t-tests on the Cell_Types_Broad:sex interaction term and were 

adjusted for multiple testing across genes within the cell type using the Benjamini–Hochberg false 

discovery rate. D) Pathway enrichment results for male-biased and female-biased genes within 

CNT cells. Dot size reflects gene set size, and x-axis position indicates significance, −log10( p-

value). Pathway enrichment was performed separately for male-biased and female-biased gene 

sets using g:Profiler. Source data are provided as a Source Data file. 

 

Figure 4. FLASH-MM identifies TB-enriched signatures within T cell populations while 

accounting for confounding variables. A) Bar plot showing the number of TB-associated 

differentially expressed genes (FDR < 0.05 and positive effect size) identified within each T cell 

subtype. B) UMAP projection of single-cell RNA-seq data from ~500K memory T cells across 259 

individuals in a TB progression cohort. CD4⁺ activated and CD8⁺ activated T cells are highlighted 

in blue and dark orange, respectively; all other cell types are shown in lighter tones for context. 

C–D) Volcano plots of differential expression in CD8⁺ activated (C) and CD4⁺ activated (D) T 

cells. Each point represents a gene, with the x-axis showing the log fold change (logFC) and the 

y-axis showing −log10(p-value). Genes significantly upregulated in TB samples are colored (FDR 

< 0.05 and logFC > 0.1). Vertical and horizontal dashed lines indicate the logFC and p-value 

thresholds. A subset of the top 10 TB-upregulated genes, ranked by effect size, are labeled. 

Differential expression between TB and control samples in each T cell subtype was tested gene-

wise using a linear mixed-effects model of the form expression ~ log(library.size) + cluster_name 

+ cluster_name:TB_status + (1|donor); P values correspond to two-sided t-tests on the 

cluster_name:TB_status interaction term and were adjusted for multiple testing across genes 

within each cell type using the Benjamini–Hochberg false discovery rate. E) and F) Dot plots 

showing enriched pathways among TB-upregulated genes in CD8⁺ (E) and CD4⁺ (F) activated T 

cells. x-axis position reflects enrichment significance, −log10( p-value). Pathway enrichment in 

panels E and F was performed separately for TB-upregulated gene sets using g:Profiler. Source 

data are provided as a Source Data file. 

 

 

 

 

 

 

 

 

Editor’s Summary  
Detecting gene expression changes in single-cell data while accounting for sample structure is 
vital but computationally demanding. FLASH-MM is a scalable, memory efficient, and 
statistically robust method that can quickly compute cell-level differential expression across 
diverse biological contexts. 
 
 
Peer Review Information: Nature Communications thanks Matthew Hirschey and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file 
is available. 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

Log-transformed
gene-by-cell

count matrix (Y)

Fixed effects 
E.g. Cell type, Sex , Age, Season

Experimental condition
Disease/health, Interactions

 

Random effects
E.g. Subjects

D
at
a

y = Xβ+Z b	+	ε	

M
od
el

M
od

el
 fi
tti
ng

A

B

C

y	: expression vector of a gene, a row of Y
X	: fixed effect design matrix
Z: random effect design matrix

t-test statistics for fixed effects 
LRT statistics for variance 

components

LMM test

Summary 
statistics

LMM estimation 

Gradient 
descent 

algorithm 

𝑌

𝑋

Z

Gene expression



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

0 1 2 3 4 5

0
1

2
3

4
5

6

Expected: −log10(uniform)

O
bs

er
ve

d:
 −

lo
g1

0(
p−

va
lu

es
)

n = 120000
FLASH−MM
NEBULA

0.0 0.2 0.4 0.6 0.8 1.0

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

n=120000
FLASH−MM, AUC=0.97
NEBULA, AUC=0.97

A B

C D
Number of cells

R
un

 ti
m

e 
(m

in
ut

es
)

20000 40000 60000 80000 100000 120000

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

20
0.

0

Method
FLASH−MM
lmer
NEBULA



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

0.00

0.25

0.50

0.75

1.00

B 
ce

ll
C

C
D
−l

ike
C

N
T

cT
AL

D
C

T
En

do
th

el
ia

l
IC
−A

IC
−B

LO
H
−l

ike
M

es
an

gi
al

M
N

P
N

K 
ce

ll
PC PE

C
Po

do
cy

te
Pr

ox
im

al
 T

ub
ul

e
T 

ce
ll

U
1

U
2

Fr
ac

tio
n 

pe
r c

el
l t

yp
e 

(%
)

Female
Male

0.00

0.25

0.50

0.75

1.00

B 
ce

ll
C

C
D
−l

ike
C

N
T

cT
AL

D
C

T
En

do
th

el
ia

l
IC
−A

IC
−B

LO
H
−l

ike
M

es
an

gi
al

M
N

P
N

K 
ce

ll
PC PE

C
Po

do
cy

te
Pr

ox
im

al
 T

ub
ul

e
T 

ce
ll

U
1

U
2

Fr
ac

tio
n 

pe
r c

el
l t

yp
e 

(%
)

Female
Male

A

C

Connecting 
tubule (CNT)

Male-enriched pathways within CNT cell population 

Female-enriched pathways within CNT cell population 

Transferrin endocytosis and recycling
ATPase dependent transmembrane transport complex

Insulin receptor recycling
Transport of inorganic cations/anions and amino acids/oligopeptides

sodium ion import across plasma membrane
intracellular monoatomic ion homeostasis

regulation of systemic arterial blood pressure
basolateral plasma membrane

active transmembrane transporter activity
active monoatomic ion transmembrane transporter activity

antiporter activity
circulatory system process

proton−transporting two−sector ATPase complex
vacuolar proton−transporting V−type ATPase complex

Collecting duct acid secretion

3 4 5 6 7
− log(p value)

positive regulation of receptor recycling
calcium/calmodulin−dependent protein kinase activity

3.1 3.2 3.3 3.4 3.5 3.6
− log(p value)

KLK1

SPINK1

WNK1

UAP1

HSPA2

SLC16A7

CHMP2B

PACRG

GLIS3

SGK1

MT−ATP6

MT−CO3

PTGER1

SPATA20

0

100

200

300

−2 −1 0 1
LogFC

−
lo

g 1
0(

P−
va

lu
e)

Significance
Female−biased
Male−biased
Not Significant

B

D



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

RPS4Y1

EIF1AY

DDX3Y

ACTB

STMN1

PPIA

NKG7

MT1E

EFHD2

0

20

40

60

−0.2 0.0 0.2 0.4
LogFC

−
lo

g 1
0(

P−
va

lu
e)

TB−upregulated

Differential expression in CD4+ Activated T

A B

C

TB-enriched pathways within activated CD8+ cells

D

TB-enriched pathways within activated CD4+ cells

CD4+ activated 
T cell

CD8+ activated T cell

12661266
268

93
71
70
63

42
36
24
22

21
21

15
15

13
13

12
7
6

5
5

4
4
4

2
1

0
0
0

CD4+ Central memory T cells
CD4+ lncRNA−high T cells

CD4+ Th1 cells
CD4+ CD27+ T cells

CD4+ CD27+ CD161+ T cells
CD4+ Central memory (CCR4+)

CD4+ Central memory (CCR4+ ICOS+)
CD8+ CXCR3+ T cells

CD4+ CCR4+ T cells
CD4+ CCR5+ Cytotoxic T cells

CD4+ Th17 cells
CD8+ Central memory T cells

CD4+ CD161+ Th1 cells
CD4+ Th17−like subset 1

CD8+ GZMB+ T cells
CD4+ CD161+ Cytotoxic T cells

CD4+ Central memory (CD38+ ICOS+)
CD4+ Cytotoxic T cells

CD4+ RORC+ Tregs
CD4+ Th2 cells

CD4+ CD161+ Th2 cells
CD8+ GZMK+ T cells

CD4−CD8+ PD−1+ TIGIT+ T cells
Vdelta1 T cells

CD4+ HLA−DR+ T cells
Vdelta2 T cells

CD4+ Regulatory T cells
Activated CD8+ T cells
Activated CD4+ T cells

0 500 1000
Number of DE genes

Ce
ll t

yp
e

Number of TB−specific DE genes per cell type

regulation of immune response
TCR signaling

Lymphocyte−mediated immunity
Reg. of T cell activation

Leukocyte−mediated immunity
immune effector process

Granzyme−mediated cell death
lymphocyte activation

Reg. of immune effector response
T cell activation

2.0 2.5 3.0 3.5

− log10(p − value)

Mitotic Metaphase and Anaphase
Mitotic Anaphase

Cell Cycle Checkpoints
G1/S Transition

DNA metabolism
Chromosome organization

Mitosis−related process
Mitotic cell cycle

Cell Cycle
Cell Cycle, Mitotic

6 8 10

− log10(p − value)

RPS4Y1

CD8a−protein

GZMH

DDX3Y

CD8B

VIM

EIF1AY

PRF1

CALR

GZMB

0

10

20

30

40

−0.25 0.00 0.25 0.50
LogFC

−
lo

g 1
0(

P−
va

lu
e)

TB−upregulated

Differential expression in CD8+ Activated T

RPS4Y1

CD8a−protein

GZMH

DDX3Y

CD8B

VIM

EIF1AY

PRF1

CALR

GZMB

0

10

20

30

40

−0.25 0.00 0.25 0.50
LogFC

−
lo

g 1
0(

P−
va

lu
e)

TB−upregulated

Differential expression in CD8+ Activated T

RPS4Y1

CD8a−protein

EIF1AY

0

20

40

60

−0.2 0.0 0.2 0.4
LogFC

−
lo

g 1
0(

P−
va

lu
e)

TB−upregulated

Differential expression in CD4+ Activated T

E F

cells cells


