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Abstract

Single-cell RNA sequencing (ScCRNA-seq) enables detailed comparisons of gene expression
across cells and conditions. Single-cell differential expression analysis faces challenges like
sample correlation, individual variation, and scalability. We develop a fast and scalable linear
mixed-effects model (LMM) estimation algorithm, FLASH-MM, to address these issues. We
reformulate aspects of the linear mixed model estimation procedure to make it faster, by reducing
computational complexity and memory usage. Simulation studies with scRNA-seq data show that
FLASH-MM is accurate, computationally efficient, effectively controls false positive rates, and
maintains high statistical power in differential expression analysis. Tests on tuberculosis immune
and kidney single cell data demonstrate FLASH-MM's utility in accelerating single-cell differential
expression analysis across diverse biological contexts.

Introduction

Differential expression (DE) analysis is a cornerstone of transcriptomics research. Single-cell
RNA sequencing (scRNA-seq) technology enables researchers to profile the transcriptomes of
individual cells, uncovering transcriptional similarities and differences across various biological
conditions for specific cell types. Advancements in cost efficiency and throughput have facilitated
the generation of large-scale datasets comprising hundreds of subjects and millions of cells,
opening new avenues for exploring cellular heterogeneity and dynamics across diverse conditions
and samples. Cells from the same individual share common genetic and environmental
backgrounds, resulting in a hierarchical structure and statistical dependencies among individual
cells in scRNA-seq data®. This introduces significant challenges for differential expression
analysis in single-cell studies, particularly due to the correlation within cell populations of each
subject (intra-subject correlation?) and the high variability across cell populations from different
subjects (inter-subject variability?). Ignoring these correlations and variabilities can inflate false
positive rates in statistical tests?. Furthermore, the large scale of single-cell data, often
encompassing hundreds of thousands to millions of cells, adds computational complexity,
requiring efficient methods to manage and analyze these vast datasets effectively.

Linear mixed-effects models (LMMs) provide a framework to address the challenges of intra-
subject correlation and inter-subject variability in single-cell differential expression analysis by



incorporating fixed effects, which capture systematic differences across experimental conditions,
and random effects, which model the correlations within subjects and the variations between
subjects®*°. In multi-subject single-cell studies, cells are nested within subjects, and subjects are
often nested within experimental conditions, meaning that cells from the same subject are
correlated, and subjects within the same condition share common sources of variation. To
account for this hierarchical structure, instead of modeling subjects as fixed effects, mixed models
treat them as random effects, efficiently capturing both within-subject correlation and between-
subject variability. Many methods and software packages have been developed to fit mixed-effects
models®2°. The most widely used package is Ime48, which uses maximum likelihood!! or restricted
maximum likelihood'? methods for model fitting. However, fitting the LMM is computationally
demanding, particularly in large-scale single-cell datasets, where standard implementations
struggle with memory usage and runtime constraints®°. As a result, the performance of mixed-
effects models for single-cell DE analyses has mostly been examined through simulation studies
involving small numbers of subjects and cells or pseudobulk methods??3,

To address the challenges of large-scale scRNA-seq data analysis using linear mixed-effects
models, we developed FLASH-MM, a fast and scalable LMM estimation algorithm for single-cell
differential expression analysis. By leveraging summary statistics, which are precomputed
aggregate representations that capture essential information from the data without storing
measurements for each individual cell, and by transferring the computation of high-dimension
matrices (number of cells) to a lower dimension (numbers of covariates and random effects) in
the model estimation step, FLASH-MM achieves both computational efficiency and significantly
lower memory usage. Compared to the standard LMM estimation method Imer in the Ime4
package®, the FLASH-MM algorithm requires orders of magnitude less compute time and memory
use while maintaining accuracy. We verified the accuracy, efficiency, and DE analysis
performance of FLASH-MM using simulation studies. We simulated multi-subject multi-cell-type
ScRNA-seq datasets using real reference data based on a negative binomial (NB) distribution.
We further demonstrate the application of FLASH-MM for case-control comparisons in a
tuberculosis immune atlas and for cell-type-specific sex comparisons in healthy kidney data. In
summary, FLASH-MM accelerates accurate single-cell differential expression analysis across
diverse biological contexts, supporting the use of mixed models in large-scale, multi-subject
single-cell studies.

Results

Overview of FLASH-MM

Single-cell RNA sequencing datasets typically consist of gene expression measurements for
thousands of genes (approximately 20,000 in humans) across tens of thousands to millions of
cells, often collected from multiple subjects or experimental conditions. A LMM can identify
differentially expressed genes, correcting for fixed effects, modeled as covariates such as batch,
sex, or treatment conditions, and subjects modeled as random effects.

We developed FLASH-MM to address the computational challenge of fitting the LMM for large-
scale scRNA-seq data by efficiently estimating LMM parameters, using maximum likelihood (ML)**
and restricted maximum likelihood (REML)* with a gradient descent approach (see
Supplementary Information). Instead of directly processing large cell-level data matrices, our
algorithm computes and operates on summary statistics, which are compact data representations,



without storing information for each individual cell. Specifically, FLASH-MM operates the matrix
computation by transferring the high-dimension n x n matrices (number of cells) to the low-
dimension p x p and q x g matrices (numbers of fixed and random effects). This reformulation
substantially reduces computational complexity from O(mn®) to O(mn(p? + g?)), and memory
complexity from O(mn) to O(m*max(p, q)), where m represents the number of genes, n is the
number of cells and p and g denote the number of fixed and random effects, respectively (n > p
and n > q). By precomputing and directly using the summary statistics as inputs, FLASH-MM
further reduces the computational complexity to O(m(p*® + g°)), which makes LMM estimation
independent of the number of cells and achieves both speed and memory efficiency (see Methods
and Supplementary Information).

With usual LMM fitting methods, variance components are constrained to be non-negative. As a
result, the asymptotic normality of the maximum likelihood estimation of variance components at
the null hypothesis is invalid due to the zero variance components being on the boundary of the
parameter space. Also, the asymptotic distribution of the likelihood ratio test (LRT) statistics is a
mixture of Chi-squared distributions, making it more difficult to model*4*. Our algorithm allows
variance component parameters to take negative values such that the zero variance components
are no longer on the boundary of the parameter space. Thus, the usual asymptotic properties of
maximum likelihood estimation at the null hypothesis remain valid under regularity conditions,
which enables the use of t-statistics or z-statistics for hypothesis testing of both fixed effects and
variance components, and the LRT statistics asymptotically follow Chi-squared distribution. When
the variance component parameter is positive, it suggests that the mixed-effects model is
appropriately specified; otherwise, the random effect term may not be needed and should be
excluded from the model.

The FLASH-MM workflow for single-cell differential expression analysis is illustrated in Figure 1.
Figure 1A shows the input structure of sScRNA-seq data, represented as a log-transformed gene-
by-cell count matrix, where each row corresponds to a gene’s expression profile. Fixed effects
can include variables such as log-library size, batch effects, biological conditions of interest, and
interactions between conditions and cell types. Random effects can capture variations across
subjects and correlations within subjects. Figure 1B outlines the linear mixed-effects model
framework, constructed for each gene using design matrices of fixed and random effects,
informed by prior knowledge of covariates and the biological question. Figure 1C illustrates the
model fitting process, comprising LMM parameter estimation and hypothesis testing. Parameter
estimation is performed using a gradient descent algorithm applied to summary statistics.
Hypothesis testing evaluates fixed effects and their contrasts using t-statistics (see Methods and
Supplementary Information).

Simulation studies

We validated FLASH-MM'’s accuracy and computational efficiency by comparing it to the standard
linear mixed model method Imer, implemented in the Ime4 package®, using simulated sScRNA-seq
data (See Methods and Supplemental Information). We also evaluated the performance of
FLASH-MM in single-cell DE analysis through simulations using two key criteria: (1) control of the
Type | error rate (false positive rate, FPR) and (2) statistical power (true positive rate, TPR). These



metrics were compared against NEBULA®, a generalized linear mixed-effects model (GLMM)
designed for DE analysis.

Simulating scRNA-seq data

Using PBMC 10X droplet-based scRNA-seq data from lupus patients!® as a reference, we
simulated six multi-subject multi-cell-type scRNA-seq datasets with 6,000 genes and sample
sizes ranging from 20,000 to 120,000 cells increasing by 20,000 at each step, based on a negative
binomial (NB) distribution. Genes were randomly selected from the reference dataset, and cells
were simulated from 25 subjects across 12 cell types under two treatment conditions. Treatments,
cell types, and subjects were assigned randomly with equal probability. A total of 480 differentially
expressed genes were designated, specific to a cell type (Figure S1).

FLASH-MM has the same accuracy as Imer, but is much faster

We first validated FLASH-MM'’s accuracy and computational efficiency using simulated data by
comparing it to the standard method, Imer, from the Ime4 package® with its default settings. The
linear mixed model (LMM) was fit to the log-transformed counts using FLASH-MM and Imer.
Because Imer in the Ime4 package doesn’t provide p-values for hypothesis tests of coefficients,
we computed p-values in this case by refitting the LMM by the Imer using the ImerTest package?’.
The differences in estimated variance components, coefficients, and p-values between FLASH-
MM and Imer are shown in Figure 2A. The model parameters (coefficients and variance
components) estimated by FLASH-MM and Imer are identical up to the sixth decimal place,
demonstrating the high accuracy of the FLASH-MM implementation. FLASH-MM demonstrates
substantially greater computational efficiency compared to Imer with default optimizer settings,
achieving a speedup of approximately 50-fold to 140-fold as the sample size increases from
20,000 to 120,000 cells (Figure 2B, Table S1, measured on a 2.8 GHz Quad-Core Intel Core i7
processor with 16 GB DDR3 RAM). These results suggest that FLASH-MM achieves
computational efficiency, accuracy, and reliable inference in practice.

FLASH-MM has a similar statistical performance to NEBULA, but is much faster

We compared the performance of FLASH-MM to NEBULA, a state-of-the-art method for
differential expression analysis of multi-subject single-cell data based on Negative Binomial and
Poisson mixed models. We ran NEBULA on our simulated data using the arguments method="LN'
and model="NBLMM', which specify the negative binomial lognormal mixed model- the same
model we used to simulate ScCRNA-seq data above. We computed type | error using the simulated
non-differentially expressed (non-DE) and DE genes and compared the power between the two
methods at a sample size of 120,000 cells.

FLASH-MM effectively controls Type | error, with p-values remaining within the expected range
of a uniform distribution, as shown in the quantile-quantile (QQ) plot of Figure 2C. This expected
range is represented by 95% confidence intervals, which indicate the natural variation we would
expect if there were no true differences in gene expression. FLASH-MM p-values fall within these
confidence intervals, suggesting that the method does not produce an excess of false positives
(Figure 2C, Figure S2). FLASH-MM demonstrates a power comparable to NEBULA, with a
Receiver Operating Characteristic (ROC) curve achieving an Area Under the Curve (AUC) of 0.97



for both FLASH-MM and NEBULA (Figure 2D, Figure S3). The t-values and p-values calculated
by FLASH-MM and NEBULA demonstrate a strong correlation (Figure S4). However, both
NEBULA and Imer required significantly longer runtimes compared to FLASH-MM (319 and 143
times, respectively, at n=120,000 cells, Table S1).

We performed additional simulation studies to further evaluate hypothesis testing performance,
and showed: 1) The FLASH-MM t-test for fixed effects achieves type-I error control comparable
to that of the ImerTest Satterthwaite approximation (Figure S5); and 2) FLASH-MM’s z-test and
LRT for variance components maintain proper type-| error control (Figure S6).

FLASH-MM supports DE analysis of diverse biological scRNA-seq data

Kidney scRNA-seq data

We first examined the sex variation within healthy kidney cell types using kidney scRNA-seq
data® (Figure 3A). The kidney data from 19 subject samples contains 14,175 genes and 27,550
cells consisting of 19 cell types after quality control (Figure 3B). We performed a differential
expression analysis using FLASH-MM to identify the DE genes between males and females within
each cell type while considering the subjects as a random effect.

Among the various cell populations, connecting tubule (CNT) cells have the highest number of
sex-specific differentially expressed genes (200), meeting the criteria of FDR < 0.05 and |LogFC]|
> 0.5 (Figures 3C). Pathway analysis of these genes highlights distinct enrichments: male CNT
cells show enrichment for pathways related to acid secretion, transporter activity, blood pressure
regulation, and ion importation, whereas female CNT cells exhibit enrichment for kinase activity
and positive regulation of receptor recycling (Figures 3D).

On the Kidney dataset, FLASH-MM required only 1.1 minutes of runtime, whereas Imer took
119.4 minutes under identical hardware conditions (2.8 GHz Quad-Core Intel Core i7, 16 GB
DDR3 RAM).

Tuberculosis (TB) scRNA-seq data

We then applied FLASH-MM to single-cell transcriptomics data from 500K memory T cells from
259 donors in a tuberculosis (TB) progression cohort!®. After quality control, the large TB dataset
contains 11,596 genes and 499,713 cells covering 29 cell states from 46 batches and 259
individual donors. We applied FLASH-MM to identify genes associated with TB status within each
cellular state. FLASH-MM identified a varying number of differentially expressed genes
associated with TB progression across different cell states (Figure 4A), using a threshold of FDR
< 0.05 and a positive effect size (i.e., upregulation in TB samples). The cell types with the highest
number of DE genes are activated CD4+ and CD8+ T cell populations, with 1266 and 268 DE
genes, respectively (Figures 4A and 4B). To further investigate TB-associated signatures, we
identified the top TB-enriched genes within these two cell states (Figure 4C and 4D). Pathway
enrichment analysis of these DE genes identifies cell-cycle pathways in activated CD4+ cells,
while activated CD8+ cells show enrichment for pathways related to immune response, TCR-
mediated T-cell activation, and chemokine signaling (Figure 4E and 4F).



Notably, FLASH-MM completed the 500K T cell dataset analysis in 1.4 hours, compared to 55.6
hours (2 days and 7.6 hours) for Imer, measured on a 2.8 GHz Quad-Core Intel Core i7
processor with 16 GB DDR3 RAM. These results demonstrate that FLASH-MM is substantially
more computationally efficient and thus a more practical choice for large-scale datasets.

Discussion

Differential expression analysis to detect changes in gene expression across conditions has long
been a fundamental aspect of transcriptomics research. However, single-cell RNA sequencing
data introduces unique statistical challenges, such as sample correlation, individual variation, and
scalability. We developed FLASH-MM as a fast and scalable linear mixed-effects model (LMM)
estimation algorithm to address these issues.

Mixed-effects models are powerful tools in single-cell studies due to their ability to model intra-
subject correlations and inter-subject variabilities. Classic LMM estimation methods, like Imer in
the Ime4 package®, face limitations of speed and memory use in the analysis of large-scale
scRNA-seq data. These limitations have encouraged researchers to use traditional bulk RNA-seq
differential expression analysis methods with pseudobulk counts by summing reads within each
cell type for each subject®2°, While this simplifies the analysis, it sacrifices the resolution inherent
in single-cell data.

To support our simulation studies, we developed a scRNA-seq simulator, implemented in the
simuRNAseq function in the FLASH-MM software distribution, to generate multi-subject multi-cell-
type scRNA-seq data based on a negative binomial distribution (Supplemental information).
simuRNAseq shares similarities with muscat? and GLMsim?.. Like muscat, the simulator captures
key characteristics of real single-cell RNA-seq data by modulating zero-inflation, overdispersion,
variance differences, cell-level library size variation, number of clusters or cell populations, and
the number of expected differentially expressed genes (Supplemental information). However,
both muscat and GLMsim have some limitations when used for sScCRNA-seq simulations. Muscat
estimates the dispersion of the negative binomial distribution using the edgeR package, but it
relies on only a subset of the reference data. As a result, it cannot scale to large scRNA-seq
datasets and captures only partial information from the reference dataset. GLMsim estimates the
coefficients and dispersion parameters of the NB model for each gene using glm.nb from the
MASS package?. While effective, this approach is computationally intensive and limited to
generating data of a fixed size that matches the reference data. Our scRNA-seq simulator uses
the method-of-moments estimate (MME)? to compute dispersion parameters for the NB
distribution. This approach is faster, more flexible, and uses the full biological reference dataset.
The performance of the scRNA-seq simulator, named simuRNAseq, is illustrated in Figure S7.

Constructing design matrices for fixed and random effects is an important step in LMM-based DE
analysis, requiring identification of the aspects of the data to be modeled, and a balance between
reducing residual variance, avoiding overfitting, and managing collinearity among covariates®. A
design matrix encodes variables such as sample conditions, batch effects, and cell types,
specifying how observations are mapped to model parameters. While dataset integration methods
(e.g., Harmony?, Seurat®®) are often applied prior to modeling, mixed-effect models can directly



account for batch effects by modeling batches as fixed or random effects, depending on the study
design and underlying biological question. However, in many scRNA-seq studies, samples or
batches are perfectly confounded with experimental conditions. In such cases, including batch as
a fixed effect may introduce collinearity and inadvertently remove the biological signal of interest.
Mixed-effect models can address this issue by modeling the batch as a random effect.

For single cell transcriptomics data, including library size as a fixed effect helps control p-value
inflation and should generally be included in the model to help with normalization. In the analyses
of the kidney and tuberculosis data, 98.8% and 99% of genes have a significant covariate of log-
library size with Bonferroni correction p-value < 0.05, respectively. Based on this empirical
evidence, we recommend considering including the log-library size as a covariate in the mixed-
effects model. Other model design decisions should be defined by the user based on the structure
of their data and the biological question under study. If samples are modeled as random effects,
their number may be high (e.g. hundreds or higher) and the FLASH-MM LMM algorithm may slow
down (Figure S8). In such cases, subsampling the data or applying dimensionality reduction
techniques, such as PCA, on the random effects can potentially help reduce their number to
improve computational efficiency (see Supplemental Information). When the covariates of random
effects are highly correlated, the dimensionality reduction technique can substantially reduce the
number of random effects. Otherwise, if the covariates of random effects are independent or
uncorrelated, the dimensionality reduction technique would not reduce the number of random
effects.

FLASH-MM makes mixed models computationally feasible for large single-cell datasets. This
scalability enables future benchmark studies to determine the optimal modeling approach in
biologically relevant contexts such as subtle perturbations, continuous gradients, and rare cell
populations where accounting for cell-level variation is likely important. FLASH-MM'’s versatile
framework can be extended to other data modalities, such as spatial transcriptomics and
multiomics. Expanding its application across diverse biological data could provide opportunities
for uncovering novel insights and facilitating integrated analyses in a wide range of research
contexts.

Methods
LMM estimation and inference

Consider the linear mixed-effects model (LMM) as expressed below?’

y=XB +Zb+ € 1)
where y is a n x 1 vector of observed response (expression for a gene), Xis an x p design matrix
for fixed effects B, Z is a n x g design matrix for random effects b, and € is a n x 1 vector of
residual errors. The term random effects may be a combination of various random-effect
components, Zb = Z; b, + -+ + Zxby, where Z = [Z,, ..., Z], b = [b], ..., b%]7, K is the number of
the random-effect components, and Z, is a n X g, design matrix for the k-th component. The
superscript T denotes a transpose of a vector or matrix. The basic assumptions are as follows: 1)
The design matrix X is of full rank, satisfying conditions of estimability for the parameters; 2) The
random vectors b, and € are independent and follow a normal distribution, b, ~ N(O, a,flqk) and

€ ~ N(0,0%L,). Here o7 and a2 are unknown parameters, called variance components, 0 is a



vector or matrix of zero elements, and I,, is an n x n identity matrix. The random effects reflect
variations between groups (subjects) and correlations within groups (subjects). Assumption (1)
implies p < n. We also assume q;, < n. If g, > n, we can use principal component analysis (PCA)
to obtain an equivalent LMM with the number of random effects less than n (see Supplementary
Information).

Maximum likelihood estimation (MLE) and restricted maximum likelihood (REML) are methods for
estimating fixed effects and variance components in LMMs. MLE estimates all parameters of fixed
effects and variance components together but can produce biased variance component
estimates, whereas REML removes fixed effects from variance estimation, resulting in unbiased
estimates. Both methods are asymptotically identical. Estimating variance components using
either MLE or REML requires numerical methods, among which the iterative gradient-based
methods are the most commonly used.

Fast and scalable algorithm: The gradient descent methods usually have a computational
complexity of 0(n®). We developed the summary statistics-based algorithm, FLASH-MM, to
implement the gradient methods for speeding up the LMM estimation and reducing the computer
memory usage. Instead of the individual cell-level data: X, Z and y, FLASH-MM uses the summary
statistics: X7X, X"y, ZTX, ZTy and Z"Z to estimate the LMM parameters. FLASH-MM achieves a
computational complexity of 0(n(p? + ¢?)), which is fast and linearly scalable with the sample
size n. These summary statistics have a low dimension and require less computer memory. By
precomputing and directly using the summary statistics as inputs, the algorithm complexity is
reduced to 0(p> + ¢3), which makes computations independent of the sample size n (number of
cells) and achieves both speed and memory efficiency (see Supplementary Information section
2.1).

scRNA-seq data typically consist of gene expression measurements for thousands of genes
(approximately 20,000 in human) across thousands to millions of cells. In the single-cell
differential expression analysis, the complexity of FLASH-MM is 0 (mn(p? + q?)), m is the number
of genes, which is linearly scalable with the number of genes. By using the pre-computed
summary statistics as inputs, the algorithm complexity becomes 0(m(p® + ¢3)).

Hypothesis testing: The hypothesis testing for fixed effects and variance components can be
respectively defined as:

HO,i:Bi =0 versus Hl,i:Bi #0,
Hox:0f =0 versus Hyg:oi > 0.

The variance components under null hypothesis, 2 = 0, are on the boundary of the parameter
space, in which case the MLE asymptotic normality is inappropriate. By reparameterizing the
variance components, 6, = a2y, the covariance matrix, Vo = 02(1 + y,Z;ZT + - + yx ZxZD),
becomes positive-definite and well-defined when y, > —1/4,,,4x, Where A,,,., > 0, is the largest
singular value of ZZ"or ZTZ. Now the parameters of variance components, 6,, k =1, ---, K, can
be negative. If 6, > 0, o2 = 6, is definable and the mixed model is well-specified. Otherwise, the



term of random effects is not needed in the model. Then the hypotheses for the variance
components are extended as:

Hy:0, < 0 versus Hy:0; >0,

in which the zero components, 8, = 0, are no longer on the boundary of the parameter space
and the MLE normal asymptotic properties hold. Then we can use z-statistic or t-statistic for
hypothesis testing of fixed effects and variance components. We can also test whether there are
no random effects, that is, the variance components are equal to zero, using likelihood ratio test
(LRT) statistic. See Supplementary Information section 1.2 for details.

Simulation methods

We generated the multi-subject multi-cell type scRNA-seq dataset by using reference data based
on a negative binomial (NB) distribution. The mean of NB distribution is taken as the sample mean
for each gene. The dispersion of NB distribution is computed by the method-of-moments estimate
(MME)?3. Compared to the maximum likelihood-based estimates, such as the gim.nb function in
the MASS package %2, the MME is computationally simpler and performs reasonably well. See
detailed simulation methods and performance in Supplemental Information.

Data preprocessing and model design

In general, we selected thresholds to be in line with typical single cell genomics projects?®, as well
as to ensure there is enough data per cell and gene for the LMM to operate on. We processed
the data by filtering the outliers based on: total numbers of UMI counts per cell and numbers of
detected genes (cell filtering), numbers of UMI counts per gene, and UMI counts per cell (cpc)
(gene filtering), which are standard in the literature?®, and described below for each dataset. Our
goal was not to optimize thresholds for biological discovery, but rather to apply reasonable filters
that balance noise reduction with data retention.

Healthy human kidney atlas

The healthy human kidney transcriptomic map*® was generated from 27,677 cells obtained from
19 living donors (10 female and 9 male). Decontaminated raw data, processed using SoupX?®,
was provided upon request by the authors. Cells were filtered based on three criteria: the number
of detected features (nFeature), library size, and the number of cells within each cell type (cluster).

The number of features per cell, defined as the total number of non-zero genes, was required to
meet a minimum threshold of 100. Library size, calculated as the total counts per cell, was
restricted to a range of 2"9 (512) to 2*16 (65,536). Cell types with fewer than 20 cells were
excluded, and “Podocyte” cells were removed due to their low sample size (16 cells post filtering).
Additionally, genes were filtered based on their expression levels, where the counts per cell ratio
had to exceed 0.005 (i.e., the total gene count divided by the number of cells had to be greater
than 0.5%). Genes were further filtered to retain those expressed in at least 16 cells, with a
minimum of 10 cells in each group, total counts between 2”6 (64) and 2"20 (1,048,576), and a
counts per cell ratio above the threshold. After these filtering steps, 27,550 cells and a refined set
of genes were retained for downstream analyses.



The FLASH-MM model was designed to account for both technical and biological variation. The
model formula used was:

~log(library.size) + Cell_Types_Broad + Cell_Types_Broad:sex + (1|samplelD),

where log-transformed library size was included as a fixed effect to normalize for differences in
sequencing depth, Cell_Types_Broad captured the cell type-specific effects, and the interaction
term Cell_Types_Broad:sex identified sex-specific differences within each cell type. A random
effect (1|samplelD) was added to account for inter-sample variability.

Tuberculosis (TB) T cell scRNA-seq data

The Tuberculosis (TB) memory T cell dataset was obtained from Nathan et al., 2021*°, comprising
500,089 cells. The raw count matrix was used for preprocessing. Metadata associated with the
cells includes donor identity, sex, batch, cluster annotations, and TB status. The dataset includes
cells from 259 unique donors, spanning 46 batches and 29 cell clusters. In the DE analysis, we
modeled the donors as a random effect and ignored the batch effect because the majority of
donors were sequenced in a single batch.

Pre-processing steps consisted of removing cells and genes to remove extreme values. Library
sizes were assessed using a boxplot, and cells with library sizes outside the lower whisker and
above an upper threshold of 215 (32,768) were removed, resulting in the retention of 499,973
cells. Genes were filtered in two steps: first, genes expressed in fewer than 2”9 cells (512 cells)
were excluded; second, genes with a counts-per-cell ratio less than 0.005 (i.e., total gene count
divided by the number of cells below 0.5%) were removed. These filtering steps reduced the
dataset to 11,596 genes and 499,973 cells, which were used for downstream analyses.

The FLASH-MM model was designed to analyze this dataset, accounting for both technical and
biological variations. The model formula used was:

~log(library.size) + cluster_name + cluster_name:TB_status + (1|donor),

where log-transformed library size normalized for differences in sequencing depth, cluster_name
captured the cell type-specific effects, and the interaction term cluster_name: TB_status identified
TB-associated differences within each cell type. A random effect (1|donor) was added to account
for inter-donor variability.

Pathway enrichment analysis for both the kidney and TB datasets was performed using
gprofiler2®132 (v0.2.3), and data visualizations were generated using ggplot2 (v3.5.1).

Data Availability

The healthy human kidney atlas?® data files were downloaded from the UCSC Cell Browser at
https://cells.ucsc.edu/?ds=living-donor-kidney. The Tuberculosis (TB) memory T cell dataset®
can be accessed from the GEO with accession code GSE158769
[https://www.ncbi.nim.nih.gov/geo/query/acc.cqi?acc=GSE158769]. The stimulated PBMC
data'® was downloaded from muscData package (Kang18_8vs8) at
https://github.com/Helenal C/muscData. Source data is provided as a Source Data file.




Code Availability

The FLASH-MM software is openly available in both R and Python implementations, with
example case studies, through the following repositories:

R package (CRAN): https://cran.r-project.org/web/packages/FLASHMM/index.html

GitHub: https://github.com/BaderLab/FLASHMM

Python package (PyPl): https://pypi.org/project/FLASH-MM/

The package is distributed under the MIT License. Analysis scripts used for the case studies
and data simulations are available at: https://github.com/BaderLab/FLASH-MM-analysis/
The code is archived and citable via Zenodo: https://doi.org/10.5281/zenodo.18222187
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Main Figure Legends

Figure 1. FLASH-MM workflow for single-cell differential expression analysis. A. Data: gene
expression matrix Y = log(1 + counts), with each row corresponding to a gene’s expression profile
and each column corresponding to a cell (gene-by-cell matrix). Metadata includes various
variables such as log-library size, batch effects, biological conditions of interest, and interactions
between conditions and cell types, which could be modeled as fixed effects, and individual
subjects, which could be modeled as random effects. B. Model: the linear mixed-effects model
(LMM) for each gene by design matrices X and Z, which are constructed based on prior
knowledge about the covariates and the biological question. C. Model fitting: comprises LMM
estimation and tests. LMM estimation is implemented by a gradient descent algorithm over
summary statistics. The summary statistics are computed as X™X, X"YT, ZTX, Z'YT, and Z'Z. LMM
tests perform hypothesis tests on the fixed effects by t-test and variance components by likelihood
ratio test (LRT).

Figure 2. Computational and statistical performance of FLASH-MM in differential
expression analysis of simulated scRNA-seq data. A) Boxplots of differences of variance
components, coefficients, and -log10(p-values) between FLASH-MM and Imer fitting for each of
6,000 genes across the six simulated scRNA-seq datasets. The boxplots contain 72,000
(=2*6000*6) values for variance components and 900,000 (=25*6000*6) values for coefficients
and p-values. B) Computation time (in minutes) for FLASH-MM, Imer, and NEBULA across the
six datasets with sample sizes from 20,000 to 120,000. C) QQ-plots of non-DE genes (negative
controls) p-values for FLASH-MM and NEBULA. The grey area represents the 95% confidence
interval, indicating the expected range under the null hypothesis. D) ROC curves for FLASH-MM
and NEBULA. Source data are provided as a Source Data file.

Figure 3. FLASH-MM identifies sex-specific variations in a healthy human kidney map. A)
UMAP projection of the healthy human kidney transcriptomic atlas, highlighting connecting tubule
(CNT) cells in purple. Other cell types are shown in lighter shades for contrast. B) Bar plot showing
the proportion of male and female cells within each annotated kidney cell type. C) Volcano plot of
differential expression between sexes within the CNT cell population. Selected genes with
significant male or female bias are labeled. Each point represents a gene, with the x-axis showing
the sex-specific log fold change (logFC) and the y-axis showing -log10(p-value). Genes
significantly upregulated in males or females (adjusted p-value < 0.05 and |logFC| > 0.5) are
colored in blue and pink, respectively. A subset of the top male-biased and female-biased genes
(ranked by effect size) are labeled to minimize visual overlap. Differential expression between
male and female CNT cells was tested gene-wise using a linear mixed-effects model of the form



expression ~ log(library.size) + Cell_Types_Broad + Cell_Types_Broad:sex + (1|sampleID); P
values correspond to two-sided t-tests on the Cell_Types_Broad:sex interaction term and were
adjusted for multiple testing across genes within the cell type using the Benjamini—Hochberg false
discovery rate. D) Pathway enrichment results for male-biased and female-biased genes within
CNT cells. Dot size reflects gene set size, and x-axis position indicates significance, —log10( p-
value). Pathway enrichment was performed separately for male-biased and female-biased gene
sets using g:Profiler. Source data are provided as a Source Data file.

Figure 4. FLASH-MM identifies TB-enriched signatures within T cell populations while
accounting for confounding variables. A) Bar plot showing the number of TB-associated
differentially expressed genes (FDR < 0.05 and positive effect size) identified within each T cell
subtype. B) UMAP projection of single-cell RNA-seq data from ~500K memory T cells across 259
individuals in a TB progression cohort. CD4" activated and CD8* activated T cells are highlighted
in blue and dark orange, respectively; all other cell types are shown in lighter tones for context.
C-D) Volcano plots of differential expression in CD8" activated (C) and CD4" activated (D) T
cells. Each point represents a gene, with the x-axis showing the log fold change (logFC) and the
y-axis showing —log10(p-value). Genes significantly upregulated in TB samples are colored (FDR
< 0.05 and logFC > 0.1). Vertical and horizontal dashed lines indicate the logFC and p-value
thresholds. A subset of the top 10 TB-upregulated genes, ranked by effect size, are labeled.
Differential expression between TB and control samples in each T cell subtype was tested gene-
wise using a linear mixed-effects model of the form expression ~ log(library.size) + cluster_name
+ cluster_name:TB_status + (1|donor); P values correspond to two-sided t-tests on the
cluster_name:TB_status interaction term and were adjusted for multiple testing across genes
within each cell type using the Benjamini—-Hochberg false discovery rate. E) and F) Dot plots
showing enriched pathways among TB-upregulated genes in CD8* (E) and CD4* (F) activated T
cells. x-axis position reflects enrichment significance, -log10( p-value). Pathway enrichment in
panels E and F was performed separately for TB-upregulated gene sets using g:Profiler. Source
data are provided as a Source Data file.

Editor’'s Summary

Detecting gene expression changes in single-cell data while accounting for sample structure is
vital but computationally demanding. FLASH-MM is a scalable, memory efficient, and
statistically robust method that can quickly compute cell-level differential expression across
diverse biological contexts.

Peer Review Information: Nature Communications thanks Matthew Hirschey and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file
is available.
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