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Abstract 

Recent advances in single-cell RNA-sequencing and lineage tracing techniques have provided 

valuable insights into the temporal changes in gene expression during development, tumour 

progression, and disease onset. However, there are few computational methods available to 

analyze this information to help understand multicellular dynamics. We introduce Deep Lineage, 

a novel deep-learning method for analyzing time-series single-cell RNA-sequencing with matched 

lineage-tracing data. Our method accurately predicts early cell fate biases and gene expression 

profiles at different time points within a clone, surpassing current state-of-the-art methods in fate 

prediction accuracy. Additionally, through in silico perturbations in cellular reprogramming and 

hematopoiesis development data, we show that Deep Lineage can accurately model dynamic 

multicellular responses while identifying key genes and pathways associated with cell fate 

determination. 

 

Introduction 

Developmental biology aims to understand the processes by which single cells divide and 

differentiate into diverse cell types in different tissues (1). Single-cell RNA-sequencing (scRNA-

seq) is a powerful tool for investigating developmental landscapes by profiling gene expression in 

individual cells at different stages (2). While scRNA-seq is valuable for investigating genetic 

mechanisms in cell differentiation, its destructive nature restricts it to capturing a single time point 

snapshots of a developing system. This constraint poses challenges in tracing lineage relationships 

and tracking cell trajectories over time (3). 

To overcome this limitation, a range of methods have been developed to study temporal 

relationships between cells. One class of computational methods, trajectory inference, predicts the 
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order of cells along a developmental path based on the idea that cells that are developmentally 

related will exhibit similar gene expression profiles (4). However, trajectory inference methods 

are limited in their capacity to capture the complexity of developmental processes, such as lineage 

branching and cellular plasticity, and can be negatively affected by technical factors and noisy data 

(5,6). New experimental lineage tracing technologies that use CRISPR/Cas9 genome editing to 

record cell division events provide another avenue for studying cell development (7). Using data 

produced by these technologies, computational methods have been developed to infer 

developmental trajectories by considering both cell lineage and cell state information from 

multiple time points (8–11). Integration of these two types of information has made predictions 

more accurate (12). However, despite these advances, the existing methods still can not accurately 

predict cell fate (13). 

Here, we present Deep Lineage, a novel computational model that integrates lineage tracing and 

scRNA-seq data to learn cellular trajectories, enabling the prediction of gene expression and cell 

type at any given time point along a trajectory. Deep Lineage uses Long Short-Term Memory 

(LSTM), Bi-directional Long Short-Term Memory (Bi-LSTM) or Gated Recurrent Units (GRUs) 

to model complex sequential dependencies and temporal dynamics of a cellular trajectory. An 

autoencoder-learned embedding captures essential features of the data to simplify input to the 

LSTM. To assess method performance, we analyzed data sets containing both lineage tracing and 

scRNA-seq data. Our results demonstrate that Deep Lineage surpasses state-of-the-art methods in 

detecting early fate bias within a developmental process and can accurately predict gene expression 

profiles at held-out time points within a clone during a biological process. Furthermore, we show 

Deep Lineage's ability to identify important genes and pathways involved in cell fate decision-

making during a developmental process and accurately simulate genetic perturbation effects on 

gene expression of cell progenies. Such insights can aid in designing experiments to reprogram 

cells into specific cell types and potentially translate to clinical applications. 

 

Results 

Model Overview 

Deep Lineage uses lineage tracing and multi-timepoint scRNA-seq data to learn a robust model of 

a cellular trajectory such that gene expression and cell type information at different time points 

within that trajectory can be predicted. It can be used to predict single-cell time points that have 

not been measured in a clone, including predicting cell fate at future time points from early time 

points (early cell fate bias). An autoencoder-learned embedding captures essential data features 

and a LSTM, Bi-LSTM (14) or GRU (15) is used to support cell type classification and gene 

expression regression tasks (Fig. 1). Deep Lineage treats cells and their progenies within a clone 

as interconnected entities. Drawing inspiration from natural language processing (NLP) (16), we 

conceptualize cellular relationships in terms of "clones" which represent cells ordered within a 

shared lineage (like words in a sentence) and gene expression relationships (like words that have 

similar meaning) (13). 
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Fig. 1:  Predicting Gene Expression and Early Cell Fate Bias via Combined scRNA-seq and Lineage Tracing. 

A visual depiction of the Deep Lineage is presented. On the left, the Waddington landscape illustrates the 

developmental trajectory, showing how cells within each clone (represented by different colours) differentiate into 

distinct mature cell types originating from stem cells. On the right, by combining scRNA-seq data and lineage tracing 

information the gene expression profiles of cells within each clone are used as input for the autoencoder. The resulting 

latent embeddings of cells in a clone are subsequently used as inputs for the LSTM, Bi-LSTM, or the GRU model. 

This integrated architecture enables the accurate prediction of both early cell fate bias and gene expression profile of 

unseen days within a clone. Notably, Deep Lineage offers the flexibility to adapt different preprocessing steps, diverse 

barcoding techniques, various dimensionality reduction methods, and a range of various deep learning models (left 

black box). 

 

We train the model, including an extensive hyperparameter search and data preprocessing to 

optimize the model's performance (lowest loss for reconstruction and classification), on predicting 

held-out time points. We then train the optimized model with all data. To use the model, single-

cell gene expression profiles from one or more time points are encoded in the learned 

autoencoder’s low-dimensional representation. This encoding and the cell’s clone label are fed 

into the LSTM or GRU network to predict cell fate bias for input cells, by examining cell types 

for each clone at a predicted future time point (Fig. 1). The model also predicts gene expression 

profiles for cells at different stages of the trajectory that can be used to impute missing time points. 

Deep Lineage can incorporate lineage tracing data using either single barcoding or cumulative 

barcoding methods (Supplementary Figure 1). Lineage tracing with cumulative barcoding 

significantly boosts the accuracy of the model compared to single barcoding resulting in more 

reliable predictions for both early cell fate bias and gene expression patterns at different stages of 

development (see below). Then by applying the SHapley Additive exPlanations (SHAP) method 
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(17) to the trained model, Deep Lineage can accurately identify key genes and regulatory 

mechanisms linked to different fate outcomes at different developmental stages. 

 

Deep Lineage accurately predicts gene expression and early cell fate 

bias in mouse hematopoiesis 
We applied Deep Lineage to the published lineage tracing data of mouse hematopoiesis, which 

consists of gene expression of 130,887 cells, and 25,289 genes (18). These clones are sampled 

from three time points, on days 2, 4, and 6. We focused on the main cell lineage in this data set, 

specifically neutrophils, monocytes, and their progenitors (Fig. 2a). We trained models to predict 

the gene expression profile of held-out cells at two-time points within a clone (predict day 4 by 

training with days 2 and 6 and predict day 6 by training with days 2 and 4)(Fig. 2b), including 

optimizing preprocessing steps and hyperparameters (see methods). We calculated the correlation 

between the gene expression profile of the predicted and held-out cells. The results demonstrated 

a high degree of similarity (𝑅 = 0.81 for both experiments), indicating that Deep Lineage 

accurately predicts the gene expression of cells unseen by the model on both day 4 (trained on 

days 2 and 6) and day 6 (trained on days 2 and 4) (Fig. 2c and Supplementary Figure 3a). We also 

observe a strong positive correlation between the average predicted expression of all genes and 

actual expression in both monocytes and neutrophils on day 4 (Fig. 2d,e). Deep Lineage excels at 

predicting average gene expression and the full distribution of diverse genes, even for cells within 

a clone that were previously unseen by the model (Fig. 2f,g). 
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Fig. 2: Deep Lineage accurately predicts single-cell gene expression of unseen cells in Hematopoiesis a, UMAP 

plot of the hematopoiesis data from Weinreb et al. Each point represents an individual cell, color-coded by cell type. 

b, Schematic representation of the gene expression prediction process using two regression models: one for predicting 
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day 4 gene expression (trained on data from days 2 and 6), and the other for predicting day 6 gene expression (trained 

on data from days 2 and 4) within a clone. c, Correlation of gene expression between Deep Lineage predictions and 

cells excluded during training, categorized by cell types and time points. d,e, Comparison of average gene expression 

values of 2000 genes between Deep Lineage predicted and real cells for Monocytes and Neutrophils. Gene expression 

at day 4 was averaged across predicted cells per clone, and then correlation was computed with actual data for each 

gene (𝑅2 indicates the squared Pearson correlation coefficient between the predicted and ground truth values). f,g, 

Violin plots show gene expression distributions between predicted and real cells for randomly selected genes both 

Monocytes and Neutrophils. 

 

To investigate early cell fate bias (Fig. 3a) in hematopoiesis, we trained a new bidirectional LSTM 

model using the cell type classification task and used it to predict late time point data from an early 

time point. Using just the gene expression of cells on day 2 of a clone, with the masking of data 

from days 4 and 6, the model attains a predictive accuracy of 76.8% in determining cell fate on 

day 6 (Fig. 3b). Providing gene expression of cells on days 2 and 4 of a clone improves the 

performance slightly and the model predicts the clonal fate on day 6 with 78.5% accuracy. If the 

model has access to the gene expression data from cells of all three days within a clone, it can 

almost perfectly predict the fate of the clone (99.2%) (Fig. 3b). Subsequently, we generate the area 

under the curve (AUC) for cell fate prediction of this model by using gene expression of cells on 

days 2 and 4, and all 3 days (Fig. 3c). Thus, by using the trained classifier, we can predict the early 

progenitor bias from an early time point, accurately differentiating between monocyte and 

neutrophil outcomes. The model performance improves when trained with additional time points. 

Furthermore, to investigate the importance of lineage tracing and clonal information, we conducted 

an ablation study involving random sampling of cells for each time point while disregarding the 

clonal information, for the train on day 2, predict day 6 experiment. The results indicate that 

neglecting lineage tracing information substantially reduces Deep Lineage's prediction accuracy 

from 77% to 52%. Adjusting the model's architecture (LSTM vs. GRU, hyperparameter changes) 

results in minimal change in accuracy (from 50% to 52%), highlighting the important role of clonal 

structure in fate prediction (Supplementary Figure 5a and Supplementary Table 3). 

 

Next, in a thorough comparison, we assessed our method alongside the state-of-the-art models: 

Cospar (9), Super OT (10), WOT (8), and GAN-Based OT (10), in predicting the fate of held-out 

clones during training. Our results indicate that Deep Lineage outperforms all other existing 

methods, demonstrating superior accuracy in predicting early fate bias (Fig. 3d). Specifically, the 

comparative analysis revealed that Deep Lineage achieved a high accuracy rate of 77%. In contrast, 

other methods such as Cospar attained a rate of 65%, Super OT exhibited a slightly higher accuracy 

at 67%, WOT maintained a similar accuracy of 65%, and GAN-Based OT achieved 62%. 
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Fig. 3: Exploring Progenitor Bias Prediction in Hematopoiesis with Deep Lineage and Comparison to State-of-

the-Art Methods. a, Schematic UMAP diagram illustrating the trajectory of stem cell differentiation and the possible 

cellular outcomes with cell colors indicating distinct clonal lineages. Grey points represent other mature cells types 

(not neutrophils and monocytes). b, Performance evaluation of the classifier using accuracy and cross-entropy loss 

metrics to predict early cell fate bias by employing gene expression of cells on just day 2, using cells on days 2 and 4, 

and including all three days within a clone. c, Receiver Operating Characteristic (ROC) curves and Area Under the 

Curve (AUC) values for the model using cells from days 2 and 4 or all three days with a clone, showing our model's 

performance in early cell fate bias prediction. Day 2 performance is very close to day 2&4 performance, thus not 

plotted. d, Comparative analysis with state-of-the-art methods in predicting early cell fate bias. Deep Lineage 

outperforms existing methods showing a higher classification accuracy. 

 

Deep Lineage accurately predicts gene expression and early cell fate 

bias in regeneration 
To evaluate the performance of our model on another dataset with more time points, we applied 

Deep Lineage to the reprogramming process of fibroblasts into induced endodermal progenitor 

(iEP) cells over 28 days (19). This data comprises gene expression data for 18803 cells and 28001 

genes, across six time points (days 6, 9, 12, 15, 21, 28), with corresponding barcode-derived 

lineage data at three time points (days 0, 3, 13) (Fig. 4a). Following the same approach as above, 

we first perform an extensive hyperparameter search to select the parameters that yield the highest 

correlation between the held-out samples during training and those predicted by the model (See 

methods, Supplementary table 2). Then we assess the ability of our model to predict gene 

expression on different days during the fibroblast transition to iEP cells. Our method consistently 
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has high performance in generating realistic gene expression profiles, regardless of the specific 

time point chosen for analysis (Fig. 4b, Supplementary Figure 3b). We also compared the gene 

expression distribution between the model's prediction and held-out cells at day 28 and showed 

that Deep Lineage can accurately predict the full gene expression distribution for both failed and 

reprogrammed cells (Fig 4c, and Supplementary Figure 4). Also, we observe a high similarity (𝑅2 

= 0.987) between the average predicted gene expression and the actual expression levels for genes 

in both successfully and failed reprogrammed cells (Fig. 4d,e). 
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Fig. 4: a, UMAP visualization demonstrates fibroblast cell reprogramming into iEPs, dots represent cells and are 

color-coded by time point. b, Correlation values between gene expression of ground truth cells and Deep Lineage 

predictions for cells excluded during training across different stages of the reprogramming process. c, Violin plots 
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show gene expression distributions between real cells and Deep Lineage predictions for randomly selected genes for 

both Failed and Reprogrammed cells. d,e. Comparative analysis of the top 2000 differentially expressed genes between 

predicted and real cells. High correlation values are observed for both successful and failed reprogramming cells, 

highlighting the accuracy of the model for different cell types (𝑅2 indicates the squared Pearson correlation coefficient 

between the predicted and ground truth values). 

 

We evaluate Deep Lineage's performance in predicting the outcome of the reprogramming process 

with ground truth labels and compare it to the current state-of-the-art method, Cellrank. (20). After 

training by providing the first four time points of the process (day 6, day 9, day 12, day 15) our 

model can predict the reprogramming outcome on day 28 with high accuracy (94%) (Fig. 5b). 

ROC analysis shows that Deep Lineage outperforms Cellrank irrespective of the number of days 

analyzed (Fig. 5c). As expected, by giving the model more early time points to use to infer later 

time points, the performance of both methods improved, but Deep Lineage performs better in all 

cases (Fig. 5c). To test our model under ablation conditions, we predict the reprogramming 

outcome by randomly sampling data points from days 6, 9, 12, 15, and 21 without considering 

clonal information. As seen for the mouse hematopoiesis ablation study, the results show a 

decrease in performance, with the average accuracy dropping from 99% to 50.6%. Also similar to 

our findings with hematopoiesis, changing the model's architecture (LSTM vs. GRU, 

hyperparameter changes) has a limited impact on accuracy, which remains in the range of 

approximately 49% to 51%. This again highlights the importance of considering clonal structure 

in accurately predicting reprogramming outcomes (Supplementary Figure 5b, Supplementary 

Table 3). 

 

 
Fig. 5: a, UMAP visualization illustrates progenitor bias toward either successful or failed reprogramming outcomes. 

b, The model's accuracy in detecting successful or failed outcomes of progenitors is examined using gene expression 

data of cells up to days 12, 15, 21, and all days within a clone. c, Benchmarking comparison between Deep Lineage 

and CellRank in predicting fate outcome when using all time points up to a given time point (e.g. day 12) to infer time 

point “day 28”. Using ROC curves and AUC values, the graph shows the predictive power of both models in predicting 

fate bias. Deep Lineage consistently outperforms CellRank. 

 

Deep Lineage can identify key genes in cellular reprogramming and 

generate realistic in silico perturbation experiments 
Detecting and targeting key genes involved in cell reprogramming is useful for advancing our 

understanding of the system and potential therapeutic applications (21). Deep Lineage uses its 
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learned latent representation to predict cellular fate and gene expression profiles and SHAP 

analysis to identify key genes within the reprogramming process. We tested this ability of Deep 

Lineage by using both fibroblast reprogramming and mouse hematopoiesis data (18,19) and 

performed a series of in silico perturbations to manipulate the fate of these systems. Using SHAP, 

we predicted key genes for the reprogrammed and failed trajectories across various time points. 

Known essential marker genes of reprogramming (19,22–24) (Apoa1, Cryab, Col1a1, and Sox11) 

are in this list. We also performed Gene Set Enrichment Analysis (GSEA) on the top 200 gene 

candidates demonstrating the ability of Deep Lineage to detect reprogramming-relevant biological 

pathways such as system and tissue development, proliferation signals, and cellular differentiation 

(Fig. 6c). Together these results suggest that Deep Lineage can be used to identify important 

reprogramming genes and processes. 

 

Our goal is to alter cellular fate and reprogram cells in silico, steering them away from trajectories 

heading towards undesirable "dead-end" outcomes (Fig. 6a). We focused on the top 10 genes 

identified by the SHAP method in the failed trajectory path (Fig. 6d). After conducting a series of 

in silico perturbation experiments, which included over-expression and knock-out of these genes 

on day 15 of failed outcome clones, we applied Deep Lineage to generate gene expression profiles 

for days 21 and 28 (Fig. 6a). Subsequently, we input the generated perturbed time series back into 

Deep Lineage to evaluate the perturbations' effectiveness in redirecting the fate of the initially 

failed clones. After the perturbation, the classifier shows that the trajectory changed, with the fate 

of the failed clones changing to successfully reprogrammed, demonstrating the ability of the model 

to predict a way to lead to more successful cellular reprogramming. To further evaluate these 

predictions, we conducted a correlation analysis comparing the average gene expression of in silico 

reprogrammed cells on day 28 to both real reprogrammed cells and real failed cells. Our results 

show a significantly higher similarity between the generated in silico successful reprogrammed 

cells and real successful reprogramming cells (Pearson correlation = 80.3%) compared to the real 

failed cells (39.9%) (Fig. 6b). This additional analysis further supports Deep Lineage's ability to 

generate realistic gene expression for cells undergoing in silico perturbation. 

 

We also applied Deep Lineage to hematopoiesis data to identify important genes and simulate the 

fate switch from neutrophils to monocytes (Fig. 6e). This analysis identified important genes, 

including some known genes (e.g. Dlk1, Gata2, Mmp8, Elane, and Lpl) important in the switch 

from neutrophils to monocytes (Fig. 6f) (25–29). Using the trained model and performing GSEA 

on the top 200 identified genes reveals significant enrichment of pathways associated with immune 

system development, differentiation, and hematopoiesis (Fig. 6g), indicating the model's ability to 

capture biological pathways relevant to hematopoiesis. By performing in silico knockouts of the 

top genes of progeny cells on day 2 of clones predestined to become neutrophils, we were 

successfully able to alter the predicted final fate of the clone, pushing it toward monocytes by day 

6. These results again demonstrate that Deep Lineage can accurately simulate and predict gene 

expression during in silico perturbation. 
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Fig. 6: (a) UMAP representation showing the procedure for in silico perturbation of cells on day 15 within failed 

reprogrammed clones, aiming to switch them into successfully reprogrammed states. b, Correlation values between in 

silico perturbed data and actual successfully and unsuccessfully reprogrammed cells on Day 28, showing the power 

of Deep Lineage in performing in silico experiments. c, Gene set enrichment analysis reveals the biological processes 

associated with the top 200 genes identified by the SHAP method (40 genes selected from each time point) d, 

Identification of the top 10 gene candidates using SHAP analysis at each time point during fibroblast cell 

reprogramming. e, UMAP visualization depicting the in silico perturbation experiment targeting progenitor cells (Dark 

orange) in clones with a Neutrophil fate (blue), resulting in a transformation to Monocytes (green). f, The top 10 gene 

candidates for hematopoiesis detected by SHAP analysis across all time points. g, Gene set enrichment analysis of the 

top 200 genes identified by SHAP analysis. 

Discussion 
The analysis of cellular trajectories during differentiation is useful for understanding 

developmental processes and supporting the development of stem cell therapies. By investigating 

the routes cells take during these processes, we gain insights into cellular decision-making 

mechanisms and the timing of critical events (30,31). Computational methods for mapping cellular 

trajectories, such as pseudotime inference, optimal transport, and latent embedding models only 

consider gene expression information, even if clonal information is available (5,32–34). To 

consider both gene expression and clonal information in trajectory analysis, we developed Deep 

Lineage, a novel method combining autoencoder-based representation learning and Long Short-

Term Memory (LSTM) or Gated Recurrent Units (GRUs) models for sequential analysis that 

capture how cells are related to each other within a clonal lineage. Deep Lineage can accurately 

predict gene expression and early cell fate bias as well as key genes for cellular reprogramming. It 

also can generate accurate in silico predictions of the results of perturbation (e.g. knockout and 

overexpression) experiments. 

 

Deep Lineage implements three neural network architectures to model sequential clonal 

information: bidirectional LSTM, LSTM and GRU. In our results, bidirectional LSTM networks 

exhibit the highest accuracy in both predicting gene expression at different days and identifying 

early fate bias but also have the highest computational cost. LSTM provides an intermediate 

option, providing close to bi-LSTM accuracy with less cost, and GRU has the least computational 

cost, but sacrifices a small amount of accuracy compared to LSTM. Supporting these three 

architectures enables researchers to balance accuracy and computational efficiency, facilitating 

wider adoption in scenarios with limited computational resources. 

 

Deep Lineage identifies key genes that may be useful to help reprogram cells. However, we cannot 

prove that our model is causal, as there are not enough perturbation experiments available to train 

or test. Thus model predictions of key genes is hypothesis hypothesis-generating and can be used 

with additional information, such as expert knowledge, to select genes more likely to be causally 

implicated in reprogramming processes. 
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Current single-cell lineage tracing experiments implement one-step or cumulative barcoding. In 

one-step, a single DNA barcode is introduced early and traced over time in a developing system, 

which in cumulative barcoding, new barcodes are generated as the system develops (13). We found 

the inclusion of additional barcoding information in the reprogramming data (cumulative 

barcoding) contributes to higher prediction accuracies compared to the hematopoiesis data (one-

step) (0.93 vs. 0.81). This suggests that cumulative barcoding captures a more comprehensive 

picture of cellular lineage, leading to enhanced model performance in single-cell trajectory 

analysis. 

 

We applied Deep Lineage to explore the dynamics of regenerative and developmental processes. 

However, it should be possible to use it to study other types of cellular plasticity, such as tumour 

development. Lineage tracing in tumours can be accomplished by inferring clonal relationships 

between cells based on somatic mutation profiles, as new mutations are generated with every cell 

division, and this process is typically amplified in cancer (35). Additionally, Deep Lineage’s in 

silico perturbation simulation capability can be used to explore novel treatment strategies and drug 

interventions. Future work can also expand Deep Lineage by integrating additional data modalities 

such as epigenomic data. 

 

We envision Deep Lineage as a valuable tool for investigating the complex trajectories in 

regeneration and various developmental processes where the system experiences diverse 

dynamics. 

Methods 

Autoencoder for latent embedding of scRNA-seq data 

To achieve the reduced dimension of the data before training the LSTM model, we employed an 

autoencoder, an unsupervised neural network algorithm (36). The autoencoder consists of two 

components: an encoder, which compresses the high-dimensional scRNA-seq data into a lower-

dimensional latent space, and a decoder, which reconstructs the data back to the original input 

space. The objective of the autoencoder is to minimize the reconstruction error, measured using 

the mean squared error (MSE) loss function, expressed as: 

𝐿𝐴𝐸 =
1

𝑁
× ∑ ∥ 𝑥𝑖 − 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑖)) ∥

𝑁

𝑖=1

 

Where N is the number of training samples, 𝑥𝑖 is the i-th input data sample which is the gene 

expression of a cell. Encoder( ) and Decoder( ) represent the encoder and the decoder parts of the 

autoencoder. By minimizing the above loss, the autoencoder learns a lower-dimensional 
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representation of the data while preserving important biological features, facilitating the analysis 

of time series models (LSTMs, GRU). 

 

RNN models for gene expression and early cell fate prediction 

For the regression task of predicting gene expression for cells within a clone, we harnessed the 

power of RNNs, mainly LSTMs and GRU. Unlike traditional feedforward neural networks, LSTM 

networks have loops and gates that enable information to persist and flow through time steps, 

making them well-suited for tasks involving time series and sequential data analysis. The 

distinguishing feature of LSTM is its memory block, which maintains a hidden state and a block 

state. The block state acts as a long-term memory, enabling the network to keep and update relevant 

information over long time ranges. The hidden state carries short-term memory and interacts with 

the block state through various gates. The LSTM block is composed of three main gates that 

control the flow of information: the input gate (i), the forget gate (f), and the output gate (o) (37). 

The input gate decides how much of the new input should be added to the block state. The forget 

gate controls what information from the previous block state should be discarded, allowing the 

network to selectively remember or forget information. The output gate determines what part of 

the block state should be exposed as the hidden state. The equations governing the LSTM block 

operations are as follows: 

Input gate 𝑖𝑡: 

𝑖𝑡  =  𝜎(𝑊𝑖  ∗  ℎ𝑡−1  + 𝑈𝑖  ∗  𝑋𝑡  + 𝑏𝑖) 

Forget gate 𝑓𝑡: 

𝑓𝑡  =  𝜎(𝑊𝑓  ∗  ℎ𝑡−1  +  𝑈𝑓  ∗  𝑋𝑡  +  𝑏𝑓) 

Output gate 𝑜𝑡: 

𝑜𝑡  =  𝜎(𝑊𝑜  ∗  ℎ𝑡−1  +  𝑈𝑜  ∗  𝑋𝑡  + 𝑏𝑜) 

Block state 𝑐𝑡: 

𝑐𝑡  =  𝑓𝑡 ∗  𝑐𝑡−1  +  𝑖𝑡  ∗ tanh(𝑊𝐶  ∗  ℎ𝑡−1  +  𝑈𝑐  ∗  𝑋𝑡  +  𝑏𝑐) 

Hidden state ℎ𝑡: 

ℎ𝑡 =  𝑜𝑡  ∗ tanh(𝑐𝑡) 

Here, 𝑋𝑡 represents the input at the current time step, ℎ𝑡−1 denotes the hidden state from the 

previous time step, and σ is the sigmoid activation function. The weights and biases, represented 
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by 𝑊𝑖 , 𝑊𝑓, 𝑊𝑜, 𝑊𝐶, 𝑈𝑖, 𝑈𝑓, 𝑈𝑜, and  𝑈𝑐, are learnable parameters that the LSTM network optimizes 

during training. To obtain a compact representation of the gene expression data, we used the latent 

layer of an autoencoder as input to the LSTM model.  

GRU is another variant of the RNN models, designed to address some of the limitations of 

traditional RNNs, such as the vanishing gradient problem that can interfere with the learning 

process. Similar to LSTM, GRU is particularly effective in processing sequential data and 

capturing dependencies over long sequences. Each GRU block also contains a hidden state, but 

instead of having separate blocks and hidden states like LSTM, it uses an update gate (z) and a 

reset gate (r) to control the flow of information (37). These gates enable the GRU to selectively 

update and reset the hidden state, facilitating the retention of relevant information and reducing 

the number of parameters compared to LSTM. In GRUs the reset gate controls how much of the 

previous hidden state should be forgotten, allowing the network to decide what information to 

retain from the past. The update gate determines how much of the candidate's hidden state ℎ`𝑡 

should be blended with the previous hidden state ℎ𝑡−1 to generate the new hidden state ℎ𝑡. This 

gate mechanism enables the GRU to regulate the information flow effectively. The operations of 

a GRU block can be summarized as follows: 

Reset gate 𝑟𝑡: 

𝑟𝑡  =  𝜎(𝑊𝑟  ∗  ℎ𝑡−1  +  𝑈𝑟  ∗  𝑋𝑡  +  𝑏𝑟) 

Update gate 𝑧𝑡: 

𝑧𝑡  =  𝜎(𝑊𝑧  ∗  ℎ𝑡−1  +  𝑈𝑧  ∗  𝑋𝑡  +  𝑏𝑧) 

Candidate hidden state ℎ`𝑡: 

ℎ`𝑡  = tanh(𝑊ℎ  ∗  (𝑟𝑡  ∗  ℎ𝑡−1) +  𝑈ℎ  ∗  𝑋𝑡  +  𝑏ℎ) 

Hidden state ℎ𝑡: 

ℎ𝑡  =  (1 − 𝑧𝑡) ∗  ℎ𝑡−1  +  𝑧𝑡  ∗  ℎ`𝑡 

Here, 𝑋𝑡  represents the input at the current time step, ℎ𝑡−1 denotes the hidden state from the 

previous time step, and σ is the sigmoid activation function. The weights and biases, are 

represented by 𝑊𝑟 , 𝑊𝑧 , 𝑊ℎ, 𝑈𝑟 , 𝑈𝑧, 𝑈ℎ, 𝑏𝑟 , 𝑏𝑧, and 𝑏ℎ are learnable parameters that the GRU network 

optimizes during training. GRU is computationally more efficient than LSTM due to its simplified 

architecture, making it particularly suitable for handling extensive datasets with limited 

computational resources or situations where training is scarce. 

The equations mentioned earlier can be used for both regression and classification tasks. In 

classification tasks, the model's output is then connected to a fully connected layer that handles the 
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classification. Employing softmax activation in this layer allows the model to derive class 

probabilities. 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑤 ∗  ℎ𝑡  + 𝑏) 

 

Data preprocessing 

Given the selection of a preprocessing method depends on the specific goal of the analysis, the 

performance of a supervised method can serve as a useful metric. Therefore, in each task 

(prediction of cell fate and gene expression), we compare the performance of different 

preprocessing steps before training the models and choose the one that leads to higher accuracy 

(lower reconstruction error for AE and lower loss for RNN) for that data. Our evaluation involves 

a multitude of combinations that incorporate different count normalization, log transformation, 

several scaling techniques, different numbers of highly variable genes, and different 

dimensionality reductions. For both reprogramming and hematopoiesis data, we realize that log 

transformation without count normalization achieves the highest accuracy and as expected using 

only raw counts or just scaling without log transformation results in poor performance which is 

consistent with the recently published benchmark paper (38) (Supplementary Figure 2, 

Supplementary Table 1). Following this, we select the highly variable genes and employ an 

autoencoder for dimensionality reduction (the architectures can be found in Supplementary Table 

1). 

Modelling choices and training 

After completing the preprocessing step, the gene expression data is partitioned into three subsets: 

80% for training, 10% for validation, and 10% for testing. To optimize model performance, we 

conduct an extensive hyperparameter search using various model types (LSTM, GRU, 

bidirectional LSTM), model architecture (number of layers, nodes in each layer), and activation 

function (Tanh, ReLU, Leaky ReLU with alpha=0.3) (the detailed results are provided in 

Supplementary Table 2). Subsequently, we select specific sets of parameters that demonstrate 

superior accuracy for both the autoencoder reconstruction and the LSTMs during regression and 

classification tasks, tailored to each dataset. For the autoencoder, we employ the mean square error 

as the loss function, to ensure effective learning of the latent representation. After training the 

autoencoder, the resulting latent embedding is used to train the RNN models. In the regression 

task, where we aim to predict gene expression levels of cells across different developmental stages, 

we employ the mean square error as the loss function. For predicting early cell fate bias 

(classification task), we adopt the categorical cross-entropy loss function. Throughout the training 

process of both the autoencoder and the RNN models, we implement early stopping, which enables 

us to halt the training once the models demonstrate optimal performance on the validation set, 
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preventing overfitting and supporting generalization to unseen data. In each iteration, we randomly 

select a training sample and update the network's weights using SGD (Stochastic Gradient 

Descent) and Adam optimization algorithms with a default learning rate of 0.001. Also, RNN 

training can be slow due to the sequential nature of computations. To tackle this challenge, we use 

the CuDNN LSTM technique, which uses GPU-accelerated optimization to enhance the training 

efficiency of Long Short-Term Memory (LSTM) networks. By using the parallel processing 

capabilities and specialized algorithms offered by CuDNN LSTM, we achieve a significant 

acceleration in model training speed. In addressing instances of missing data within time series, a 

common approach involves the use of masking techniques. When a data point at a specific timestep 

is not available, the model skips that particular timestep and proceeds to the subsequent one. By 

using masking in both classification and regression tasks, we ensure that the time series model 

handles missing data consistently and effectively. Regarding the model selection, we observe 

GRU, and LSTMs achieve high accuracies with LSTMs showing slightly superior performance 

(Supplementary Figure 2, Supplementary Table 1). However, if computational resources are 

limited, we recommend using GRU over LSTMs, as GRU requires less computing power. 

 

 

Comparison with existing methods 
To establish a benchmark for evaluating the performance of Deep Lineage in early cell fate bias 

and predicting gene expression of cell progenies, we selected existing relevant methods to compare 

to: Cospar (9), Super OT (10), WOT (8), and GAN-Based OT (10). We employ the same task as 

performed by Super OT (10), using the accuracy metrics reported in their study, thus enabling a 

direct comparison of our model's performance against these established benchmarks. 

In the context of early cell fate bias in the reprogramming dataset, we conduct a comparative 

analysis between Deep Lineage and Cellrank (20). The Cellrank framework integrates similarity-

based trajectory inference with RNA velocity to uncover directed probabilistic state-change 

trajectories. When applying Cellrank to the reprogramming data, we followed the recommended 

preprocessing steps, including filtering genes based on a minimum expression threshold across ten 

cells and at least 20 counts in both spliced and unspliced layers. Following this, normalization by 

total counts per cell was performed, along with log transformation, while selecting the top 2,000 

highly variable genes. Subsequently, a PCA representation was computed using the top 30 

principal components (PCs) to construct a K-nearest neighbor (KNN) graph, with the parameter K 

set to 30. 
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Hardware used 

Two computational setups are used for data processing, model training, and plotting. A distributed 

computing system was used extensively for data processing and model training. Nvidia A100 

(40GB) and Nvidia P100 (16GB) GPUs were used on this computing server. Intel Xeon E5-2680v4 

2.4 GHz (Broadwell) and AMD EPYC 7542 2.9 GHz CPUs were used for other tasks. The 

maximum memory used on these servers was 64GB. 

Data availability 

The data used in this study are openly accessible and can be obtained from their respective public 

repositories. The hematopoiesis Weinreb et al. data is available for download from the Gene 

Expression Omnibus (GEO) database under accession number GSE140802. The reprogramming 

dataset can be accessed from the GEO database with accession number GSE99915. Additionally, 

a preprocessed version of the data can be obtained from: https://cospar.readthedocs.io/en/latest/. 

Code availability 

Code supporting this study is available on:…. We used Python 3.9.13, tensorflow-gpu 2.10.0, 

cudatoolkit 11.3.1, cudnn 8.4.1.50, matplotlib 3.5.1, numpy 1.22.4, scanpy 1.8.2, scikit-learn 1.1.1, 

seaborn 0.12.2, scipy 1.10.1, keras 2.10.0, cospar 0.2.1, pip 22.1.2, pandas 1.4.3, conda 22.9.0. 
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