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Abstract: Reversible protein-tyrosine phosphorylation is catalyzed by the antagonistic 

actions of protein-tyrosine kinases (PTKs) and phosphatases (PTPs), and represents a major 

form of cell regulation. Acute myeloid leukemia (AML) is an aggressive hematological 

malignancy that results from the acquisition of multiple genetic alterations, which in some 

instances are associated with deregulated protein-phosphotyrosine (pY)-mediated signaling 

networks. However, although individual PTKs and PTPs have been linked to AML and other 

malignancies, analysis of protein-pY networks as a function of activated PTKs and PTPs has 

not been done. In this study, mass spectrometry was used to characterize AML proteomes, 

and phospho-proteome-subsets including pY proteins, PTKs, and PTPs. AML proteomes 

resolved into two groups related to high or low degrees of maturation according to French-

American-British (FAB) classification, and reflecting differential expression of cell surface 

antigens. AML pY proteomes reflect canonical, spatially organized signaling networks, 

unrelated to maturation, with heterogeneous expression of activated receptor and non-

receptor PTKs. We present the first integrated analysis of the pY-proteome, activated PTKs, 

and PTPs. Every PTP and most PTKs have both positive and negative associations with the 

pY-proteome. pY proteins resolve into groups with shared PTK and PTP correlations. These 

findings highlight the importance of pY turnover and the PTP phosphatome in shaping the 

pY-proteome in AML.  
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Statement of significance of the study  

 

In this study we used a battery of proteomics methods to characterize the proteomes of 

primary AML tumors. This included label-free quantification of total proteome, phosphotyrosine-

proteome, and comprehensive characterization of classical phosphotyrosine phosphatases (the 

PTPome). We demonstrate our first integrated analysis of these different kinds of phospho-

proteomics datasets. In particular we provide a so-called cluster-of-clusters in which we relate the 

profile of tumor protein-phosphotyrosine as a function of activated tyrosine kinases and expressed 

PTP enzymes. To the best of our knowledge, no such integrated analysis has been published. The 

data argue that the proteome may have utility as a means to stratify tumors according to their 

protein expression profiles. Importantly, our results illustrate how the PTPome, not just the protein 

kinases, influence the phospho-proteome.  
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1   Introduction 

Enormous efforts aim to define genomics-based molecular signatures in order to 

guide the development of precision treatments for individual malignancies. This goal reflects 

knowledge that tumorigenesis is driven by combinatorial changes in oncogene and tumor 

suppressor gene [1].  This is exemplified by acute myeloid leukemia (AML), which is a 

collection of diseases caused by a variety of recurrent and unique mutations[2-5]. A total of 

23 genes were significantly mutated, and another 237 were mutated in two or more samples 

in the genomes of 200 AML samples [5]. Some of mutated genes are well established as 

being relevant to AML pathogenesis (e.g., DNMT3A, FLT3, NPM1, IDH1, IDH2, and 

CEBPA) [5].  Gene expression signatures have been suggested for AML [6, 7]. However, the 

utility of cancer-associated mRNA expression-based signatures has been questioned [2]. To 

some extent this may reflect the generally poor correlation between mRNA and protein 

abundances [8-11]. None of the current classification schemes for AML are entirely 

prognostic. Nearly 50% of AML samples have a normal karyotype, and many of these 

genomes lack structural abnormalities [5]. These observations provide a rationale for 

proteomic studies of AML as an alternative source of molecular features as a basis for 

classification and treatment.  

Characterization of AML proteomes and/or phospho-proteomes by various technical 

platforms including multi-parameter phospho-flow cytometry [12], MS [13], and reverse-

phase protein array [8], suggest that patients may stratify into groups defined by distinct 

phosphorylation networks, which may have prognostic utility. Protein-phosphotyrosine (pY) 

modifications are a dynamic product of the antagonistic actions of protein-tyrosine kinases 

(PTKs) and protein-tyrosine phosphatases (PTPs) (Fig. 1A). Both enzyme classes are well 
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known for their genetic links to AML [14-17]. PTKs are well established potential drug 

targets in various malignancies, including AML [18]. PTPs are also principal factors in 

cancer, wherein they are known to function as positive effectors and/or antagonists of 

pathways that drive cell transformation [19]. MS analysis of the entire complement of 

classical PTPs, the PTPome, confirmed that variation in PTP expression affects cellular 

protein tyrosine phosphorylation [20].  However, the extent to which the protein-pY 

landscape of a cell is a regulated product of the activated tyrosine-kinome and PTPome, as 

simply depicted in Figure 1A, has not been systematically investigated.   

Herein, we report an integrated analysis of AML proteomes and sub-proteomes 

encompassing tyrosine phosphorylated proteins, activated PTKs, and the PTPome. Our 

findings reveal new insight into the existence of diverse PTK-PTP relationships associated 

with pY networks in AML.  

 

2   Materials and Methods 

2.1  AML samples and controls 

Samples were obtained with REB approval from the Princess Margaret Hospital leukemia 

repository (Table S1).  AML samples are sterile, viable cryopreserved AML cell suspensions, 

obtained through Ficoll separation of diagnostic bone marrow aspirates; and normal control 

cells are peripheral blood mononuclear (PBMC) fractions.  All cells were stored under liquid 

nitrogen before use.   

2.2   Total peptide profiling and peptide enrichment by pY and oxPTP antibodies  

Fig.1B depicts three integrated procedures that were used to analyze AML samples in this 

study. AML cells were lysed in a urea buffer and then digested by trypsin as described 
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previously [21].  For total protein analysis (proteome), 5 μg (protein) starting material was 

digested to peptides and then analyzed by LC-MS/MS.  For protein-pY profiling (pY-ome), 5 

mg digested protein was subjected to affinity purification by anti-pY antibody (PTMScan, 

Cell signaling Technology, Danvers, MA) [22].  For comprehensive profiling of classical 

PTPs (PTP-ome), 3 mg digested protein was oxidized with pervanadate, and oxidized PTP 

active site motif containing peptides were enriched by anti-oxPTP mouse antibody (R&D 

systems, cat#MAB2844) as described previously [20]. Detailed protocols for total proteome, 

pY-ome and PTP-ome are provided  in the supplementary protocol.  

2.3  LC-MS/MS analysis  

Peptides were separated at an operating temperature of 50°C on a 50-cm Easy-Spray column 

(75-μm inner diameter) packed with 2 μm C18 resin (Thermo Scientific, Odense Denmark). 

The peptides were eluted over 120 min (250 nl/min) for pY-ome and PTP-ome analyses, and 

240 min for whole proteome analysis. The LC was coupled to an Orbitrap Elite mass 

spectrometer by using a nano-ESI source (Thermo Fisher Scientific, San Jose, CA). Mass 

spectra were acquired in a data-dependent mode with an automatic switch between a full scan 

and up to 10 data-dependent MS/MS scans, using HCD fragmentation. Target value for the 

full scan MS spectra was 3,000,000 with a maximum injection time of 120 ms and a 

resolution of 70,000 at m/z 400. The ion target value for MS/MS was set to 1,000,000 with a 

maximum injection time of 120 ms and a resolution of 17,500 at m/z 400. Repeat sequencing 

of peptides was kept to a minimum by dynamic exclusion of sequenced peptides for 20 s. 

Acquired raw files were analyzed by MaxQuant software (version 1.3.0.5) for 

identification and quantification on Swiss-Prot database (2013.07 version, 20199 entries). For 

proteome and pY-ome data, the search included cysteine carbamidomethylation as a fixed 
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modification, N-terminal acetylation, methionine oxidation, phospho-serine, -threonine and -

tyrosine (pY-ome data only) as variable modifications. For PTP-ome data, cysteine 

converting to cysteic acid was added as variable and cysteine carbamidomethylation was 

changed from fixed to variable modification. The default search parameters in MaxQuant 

were used. Minimum number of peptides for protein quantification was 2 unique 

peptides/protein. Localization probabilities for phosphorylation site and cysteic acid for 

cysteine were required to exceed 75%.  The MS spectra of phosphor-peptides discussed in the 

Results section are shown in Figure S6. MS information related to all detected pY peptides 

and PTP-ome peptides is shown in Table S5 and Table S8, respectively.  

Bioinformatics analysis was completed by using Perseus software tools [23] (perseus-

framework.org/) within the MaxQuant environment, R-program, and Cytoscape. For 

unsupervised clustering and volcano plots, normalized LFQ protein intensities were log2 

transformed, and with imputation of missing values on a per-sample basis using the Perseus 

default parameters.  

Intensities of pY peptides were normalized to peptide amounts in each sample that 

were measured by using a micro-BCA assay. For clustering analysis of samples based on pY 

peptides, imputation of missing peptide values was completed in order to replace zero values.  

Correlation coefficients between pY-ome and tyrosine kinases or PTPs were 

calculated by using the correlation function “Corr”, and method “Spearman” in the R-

program.  The log2 intensity of peptides or proteins, and the correlation coefficient of 

different pY sites were used for hierarchical clustering by Euclidean distance with average 

linkage in Perseus.  
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2.3  Signaling pathway analysis in AML  

The AML pY-ome enrichment map was created using g:Profiler with default 

configurations[24]. We selected the terms with at least 10 genes (Table S5). For each term, 

we used our pY expression data to calculate total expression score (TES) and average 

identification frequency (AIF) that are the total expression of all genes associated with the 

term and the average identification of the term’s proteins among our 12 samples, respectively 

(Table S5). 

The pathway analysis and network visualization was carried out by using Cytoscape 

(2.8.2) and Cytoscape Enrichment Map application [25] with the following parameters: 

analysis type = generic, p-value cutoff = 1, FDR Q-value cutoff = 1, overlap coefficient = 

0.42 and similarity cutoff = Jaccard + overlap combined. The p-value, TES, AIF and number 

of genes per term were visualized as the node size, node color intense, node-border color 

intense and node label, respectively.  We selected the most significant terms (ten terms) based 

on Cytoscape sub-networks and g:Profiler enrichment map. The gene-to-gene interaction 

network with integrated subcellular localization information was built by using the Cytoscape 

Genemania application [26]. From Genemania, we retrieved the interactions between the 

identified genes only, by setting the “related genes” option in Genemania to 0. The 

subcellular localization information was collected using four databases: LOCATE-human 

[27], LOCATE-mouse [28], the Human Protein Reference Database [29], and UniprotKB. 

We clustered the subcellular locations into 6 main locations that are Extracellular, 

Membranes, Cytoplasm, Organelles, Nucleus and Unknown (Table S6).  
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2.4 Data and materials availability 

MS data have been deposited to the ProteomeXchange Consortium [30] via the PRIDE 

partner repository with the dataset identifier PXD001170. 

[Reviewer Access: Project name: AML_profiling; Project accession: PXD001170; Reviewer 

account username: reviewer41583@ebi.ac.uk; Password: UqPVjMIH; Access the data at 

http://tinyurl.com/q77c2mu] 

 

3   Results 

3.1 Comprehensive analysis of the AML proteome  

In order to address relationships between the AML proteome, pY-ome, and PTP-ome, an 

experimental platform was implemented, as outlined in Fig.1B. Protein extracts were 

converted to tryptic peptides and then either analyzed by LC-MS/MS directly, or subjected to 

affinity purification to enrich for pY-containing peptides, or PTPs as indicated. Proteomic 

datasets were then investigated for relationships by using an integrated approach involving 

pathway enrichment and protein-protein interaction-based network analyses.   

In order to characterize the AML proteome, a set of 12 primary AML samples was collected 

(Table S1). FLT3-ITD (internal tandem duplication) was detected in one patient sample (#118).  Total 

protein extracts were subjected to quantitative analysis by MS [21]. Four healthy patient-derived 

peripheral blood mononuclear cell (PBMC) samples were used as a normal blood cell reference. In 

aggregate, 4485 distinct protein groups were identified (Table S2), and unsupervised hierarchical 

clustering, based on 3318 proteins observed in two or more AML patients, resolved the samples into 

3 groups (Fig. 1C). One group corresponds to the four PBMC samples, which is significant difference 
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from other two groups (p<0.05, Fig.S1A and S1B). Another group, designated Mhigh, consists of four 

samples including morphologically mature M5 and M5a samples (FAB, French-American-British 

classification), and one that was annotated as prior myelodysplastic syndrome (designated PM in 

Fig.1C). The third group, designated Mlow, consists of eight samples with minimal (M1) or no (M0) 

maturation, and including one sample with unknown FAB classification (indicated as NA in Fig.1C), 

and another that was originally scored as M4, but upon relapse was classified as acute lymphoblastic 

leukemia (ALL). This indicates that monocytic differentiation, which characterizes M5 FAB 

classification, is associated with a distinctive proteome discernable by MS analysis at the moderate 

depth of coverage (approx. 3000 proteins) achieved in this study. 462 proteins were identified as 

differentially expressed between the Mhigh and Mlow subgroups (Table.S3). Fifty proteins were very 

highly differentially expressed (|fold change| >10; p<0.01) between the Mhigh and Mlow subgroups 

(Table 1). Among this set of proteins, only the actin-binding protein Fascin (FSCN1) was more highly 

expressed in the Mlow group, whereas 49 proteins were more highly expressed in the Mhigh subgroup, 

including 6 hematopoietic cell lineage markers, and 25 predicted extracellular or secreted proteins.  

A number of proteins were found to be significantly differentially expressed when the AML 

and control PBMC proteomes were compared (Table. S4). Of these, 107 were more highly expressed 

in PBMC, and 269 more highly expressed in AML. Within the 376 differentially expressed proteins 

are 15 cancer genes according to the Sanger Cancer Gene Census: CD74, CDK6, DDX6, ETV6, FNBP1, 

HMGA1, MSH2, MSH6, NDRG1, NUP214, NUP98, PSIP1, RPL22, SMARCB1, and TCEA1 [31]. Data on 

200 AMLs from The Cancer Genome Atlas (TCGA) Resource [5], accessed and analyzed by using 

cBioPortal for Cancer Genomics (www.cbioportal.org), indicated that mutation of these cancer genes 

is infrequent in AML (Table S4). FLT3 and JAK2, which are mutated in some AML [5], were only 

detected at the protein level in one sample and showed no significant differences in protein 



www.proteomics-journal.com Page 12 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

 

12 

expression between normal and AML.  This may reflect low level expression of these signaling 

proteins, below our limit of detection in total proteome analyses.      

3.2 Tyrosine phosphorylation and pathway analysis 

Comprehensive protein-pY analysis was completed to quantitatively characterize the AML 

pY-ome. 219 pY sites, encompassing 159 proteins, were measured (Table S5).  In order to 

determine the cellular processes and pathways represented in the pY dataset, pathway 

enrichment analyses were conducted. This revealed statistically significant functional groups 

(Fig. 2A). An AML enrichment map, created by using g:Profiler [24, 32], resulted in over 

1,600 GO, KEGG and REAC terms. Terms with at least 10 genes were selected (232 terms) 

(Table S6). Additionally, pathway enrichment analysis was completed by using the 

Cytoscape Enrichment Map application [25]. As shown in Fig. 2A, the network includes five 

disconnected terms.  The three most statistically significant groups (Fig. 2A, encircled with 

dashed lines) were cell surface receptor signaling pathway, response to peptide, and peptidyl-

tyrosine phosphorylation. In order to explore additional functional relationships within the 

AML pY-ome, we further used this set of genes and Cytoscape Genemania [26] to construct 

an AML gene-to-gene interaction network, shown in Fig.2B (Table S7). Phospho-protein 

expression level, identification frequency, and known subcellular localization information 

were used to arrange the interaction network. The resultant schema depicts a network 

consistent with the transduction of extra cellular signaling cues across the plasma membrane, 

through membrane-associated signaling components, and leading to cytoplasmic and nuclear 

effectors (Fig. 2B). Two detected RTKs, FLT3 and KIT, which function atop activated 

pathways (Fig. 2B) are known to be mutated in AML [5].  
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3.3 An activated kinome in AML 

Unsupervised hierarchical clustering based on the quantified pY-peptides divided AML 

samples into two groups (Fig.S2A). Each group contains samples from both the Mlow and 

Mhigh categories, suggesting the degree of AML cell maturation per se is not associated with 

gross differences in protein tyrosine phosphorylation. Thirty-three protein kinases were 

among the identified pY-containing proteins. Activation-loop (A-loop, DFG–pY–APE 

motif), as shown in Fig. S2B, were detected in eight kinases. Fig. 3 presents a matrix of 

phosphorylated kinases arranged in a hierarchical (top-to-bottom) manner, with receptor 

tyrosine kinases (RTKs) followed by non-receptor PTKs, followed by non-tyrosine protein 

kinases. MS ion currents for pY-peptides can be compared in the horizontal direction.  The 

maximum magnitude of the MS intensity for each pY peptide species is shown in the last 

column (in shades of blue), as an indicator that some pY peptides may have been present in 

low levels or have low MS response rates.  

 Each of the samples contained two or more pY-containing non-receptor PTKs (Fig. 

3A), which, according to the computed interaction network (Fig. 2B), are coupled to plasma 

membrane-associated receptors. Signals derived from SRC-family tyrosine kinases, and the 

non-receptor tyrosine kinase SYK, were 6-fold and 26-fold higher in Group 2 compared with 

Group 1, respectively (Fig. 3A). Half the samples, including four in Group 1 and two in 

Group 2, did not contain a detected RTK. Three RTKs were measured including KIT and 

FLT3, which are well known to be activated in AML [33, 34], and FGFR3, which is not 

generally associated with acute leukemia. FLT3 mutation (FTL3-ITD) was only identified in 

sample #118 (Table S1), which had highest phosphorylation signal at position Y936 (Fig. 3).  

While FLT3 protein was only detected in sample #228 (Table S2), which had highest 
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phosphorylation signal at FLT3 Y969.  pYome analysis (Fig. 3) revealed tyrosine 

phosphorylations of FLT3 in some samples which did not have FLT3 mutation or detectable 

FLT3 protein, indicating pYome analysis is a sensitive and complementary tool for analysis 

of signaling pathways in patient samples.  

3.4 PTP-ome quantification 

Anti-oxPTP peptide antibody was used to enrich PTP peptides as described previously [20]. 

Sixteen classical PTPs were quantified from eight AML samples (Fig. 4A; additional MS 

information is provided in Table S8). Venn analysis illustrates that three PTPs were 

themselves subject to tyrosine phosphorylation, and eleven were also measured as part of the 

total proteome analysis (Fig. 4B).  We note that the AP-MS approach for PTP-ome 

characterization identified more PTPs [35] than total proteome analysis [11], and they were 

quantified in a greater number of samples. All PTPs identified by total proteome or pYome 

were quantified by PTPome. Therefore, the AP-MS method provided more thorough data 

towards the analysis of the impact of the PTP-ome on total cellular tyrosine phosphorylation, 

as described below.  

The influences of the activated tyrosine kinome and PTP-ome on the pY-ome in AML 

were considered. There was a strong correlation (coefficient of determination R
2
 >0.65, p 

<0.05) between measures of activated tyrosine kinases and the overall level of protein-pY 

(Fig. 4C).  In addition, the PTP-ome may not be simply a negative regulator of cellular 

protein-pY, since there was a moderate positive correlation, although not significant 

(p>0.05), between the level of expressed PTPs and cellular protein-pY (R
2
 >0.3, Fig. 4D). 

There was no correlation between PTP expression level and activated tyrosine kinases.    
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3.5 Integrated analysis: the pY-ome as a product of the activated kinome and PTP-ome 

Correlation analyses were performed in order to further reveal relationships between the pY-

ome, activated kinome, and PTP-ome. The correlation coefficients relating pY-ome and 

kinome or PTP-ome are shown in Table S9, and an integrated heat map of correlation 

coefficients between pY-ome and kinome/PTP-ome is shown in Fig. 4E (see also Fig.S3). 

Instances where there are a positive correlations between pY-ome and kinome, but negative 

correlations with the PTP-ome may represent examples of net antagonistic regulation of 

protein phosphorylation by kinase and dephosphorylation by PTP (Fig. 1A).  

The dendrogram on top of the heat map in Fig. 4E largely separated the kinome and 

PTP-ome. Strikingly, every PTP, as well as most kinases, had both positive and negative 

associations with the pY-ome. The kinases were largely separated into 2 groups (Group A 

and B in Fig. 4E). The three measured RTKs (KIT, FGFR3, FLT3) did not cluster together, 

and only one cluster contained both kinases (DYRK1A, DYRK2) and phosphatases (PTPRB, 

PTPRG, PTPN13, PTPN18).  

Analysis of the horizontal dendrogram revealed 17 clusters of pY sites (Table S9). 

Five clusters that contain more than 10 pY sites are shown in Figure 4E, numbered 4, 8, 9, 12 

and 13. The sequence contexts of the pY sites associated with these five clusters are 

distinctive, as shown in Fig. 4E (see also Table S9).  Four to six representative pY sites from 

each of these clusters are shown to the right of the determined consensus sequence logo. 

Another five clusters with more than five, but less than 10 pY sites are shown in Figure S4.  

In general, pY-ome cluster 4 is positively correlated with group A kinases, including HCK 

and ABL2, and several PTPs. Cluster 8 and 9 are both highly positively correlated with group 

B kinases, including FGR, SYK, BTK, but differ in their PTP correlations. Cluster 12 and 13 
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show strong positive correlation with all of the kinases. Cluster 12 shows strong negative 

correlations with most of the phosphatases, whereas cluster 13 shows moderate positive 

correlation with most of the phosphatases.  

Although many kinases show both positive and negative correlations with the pY-

ome, a subgroup of 5 kinases (FGR, SYK, BTK, PTK2B and SGK223) in Group B has 

positive correlations with a majority of the pY-ome. PTPN1 and PTPN2 (see asterisks in Fig. 

4E) are structurally and functionally related [36], but show distinct relationships with the pY-

ome. PTPN1 has modest positive and strong negative correlations in clusters 4 and 9, 

respectively, whereas PTPN2 has almost opposite relationships in these two regions (Fig. 4E 

and Table S9). Figure S5 shows a more detailed list of 58 protein-pY sites highly discordant 

in their correlation with PTPN1 and PTPN2. In general, PTPN1 has negative correlation with 

most of pY sites (44 sites), whereas PTPN2 is negatively correlated with only 14 sites. 

Indeed, four reported PTPN1 substrates, FLT3 [37], SYK [38], STAM2 [39] and PXN [40], 

showed negative correlations with PTPN1 expression.  Approximately half of the pY sites 

that were negatively correlated with PTPN2 expression are annotated for nucleic acid 

interaction/localization such as RPS13, SRRM2, GSTp1, SF3A3 and RPS10 (Fig.S5). 

4   Discussion 

Classification of AML according to the FAB system is based on morphologic 

features, along with flow cytometry analysis of surface markers, cytogenetics, and assessment 

of recurrent molecular abnormalities. So far, none of the current classification schemes for 

AML are entirely prognostic.  Comprehensive proteome analysis segregated AML into two 

significantly different groups, designated Mlow and Mhigh. Among the highly differentially 

expressed proteins are six known hematopoietic surface antigens, and more than twenty other 
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secreted/extracellular proteins. This is consistent with the known heterogeneity in AML 

antigen expression [41].  Our findings illustrate the potential for comprehensive or targeted 

proteome profiling as an approach to complement FAB classification of AML. FAB 

classification is commonly for AML, but does not take into account some prognostic factors. 

The World Health Organization (WHO) has developed a newer system for AML 

classification that includes some of these factors [42].  

Pathway analysis of the AML pY-ome was consistent with the canonical view that 

these malignancies are dependent on, if not driven by, activated pY-mediated signaling 

networks generally proceeding from the plasma membrane to the nucleus (Fig. 2). Clustering 

analysis of the AML pY-omes revealed two groups (Fig. 1D), one of which (Group 2) 

showed a higher overall level of protein-pY, and a greater complement of activated non-

receptor tyrosine kinases compared with the other (Fig. 3).  SYK and SRC-family kinases 

have been identified as therapeutic targets in AML [43, 44]. Both Group 1 and Group 2 

contained some samples with activated FLT3 and/or KIT, both implicated as targets in AML 

[33, 34], but Group 1 on average had a lower level of activated non-receptor tyrosine kinases 

(Fig. 3). Curiously, one of the Group 2 tumors expressed activated FGFR3, as indicated by its 

pY-containing A-loop peptide. FGFR3 is a target in t(4;14) multiple myeloma [45, 46] and 

widely expressed in chronic leukemia [47], but has not been established as a target in AML. 

These results illustrate the potential for pY-focused phospho-proteomics as a systematic 

approach for the discovery of candidate tyrosine kinase targets [48, 49], and may be 

instructive towards testing primary AML tumors ex vivo for sensitivity to tyrosine kinase 

inhibitors (TKIs).   



www.proteomics-journal.com Page 18 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

 

18 

Only recently have proteomics technologies emerged to facilitate comprehensive 

analysis of the classical PTPs, the PTP-ome [20]. This study represents a primary attempt to 

integrate cellular protein-pY patterns with the expression of activated kinases and the 

PTP-ome. It is conceivable that positively and negatively correlated PTP expression with a 

given pY site reflects the indirect activation of phosphorylation (e.g. dephosphorylation of an 

inhibitory pY site on an upstream PTK) and a direct role in dephosphorylation, respectively.  

Almost half of the measured pY-ome was positively correlated with the PTP-ome 

(Fig. 4E, cluster 4, 8 and 13). It was reported recently that PTP activity in acute leukemia 

patients was high compared to the controls [50]. PTPN1 and PTPN2 are structurally and 

functionally related [36], but in AML their correlation with the pY-ome, particularly with 

respect to clusters 4 and 9, were contrasting (Fig. 4E). This may reflect differences in their 

subcellular localization, which has been shown to regulate their access to substrate RTKs 

[e.g. ref. 51]. Our results indicate that a high level of classical PTP expression in AML 

neoplasms does not necessarily result in low levels of pY-containing proteins, and supports 

the notion that protein-pY turnover is elevated in AML.    

In conclusion, this study indicates and emphasizes the complexities involved in the 

biological regulation and technical measurement of protein phosphorylation. The comparison 

of the relative influences of the activated tyrosine kinome and PTP-ome on the pY-ome in 

AML indicated a generally stronger contribution by the kinome than the PTP-ome. Our 

findings illustrate that the expression of PTPs, which are highly variably expressed in cell 

lines, tissues and tumors [20] will have a strong influence on pY networks. Awareness of this 

may be of particular importance when modulation or monitoring protein-pY is a therapeutic 

aim.    
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Figure Legends 

Figure 1. Profile of total protein in AML. (A) The dynamic regulation of protein tyrosine 

phosphorylation by kinases (kinome) and phosphotyrosine phosphatase (PTP-ome). (B) The 

Experimental design and proteome analysis of AML tumors. AML cells were treated as illustrated 

and three MS datasets were obtained from LC-MS/MS analysis: Proteome, pY-ome and PTP-ome. (C) 

AML proteome analysis. Unsupervised clustering of AML and PBMC cells according to the normalized 

variation of abundance of 3318 proteins. The French-American-British morphology classification 

(FAB classification; M0 through M5), when known, is indicated. The samples cluster into three main 

groups including the control PBMC samples (shaded grey); a group designed Mhigh (shaded blue) 

comprising AML samples related to M5 classification cases; and a third group, designated Mlow, 

mainly comprising AML cases with minimal (M1) or no (M0) maturation.  Averages of protein 

expression in two experiments were used for statistical analysis.  
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Figure 2.  Biological functional network analysis of AML pY-ome.  (A) Pathway enrichment analysis of 

AML pY-ome. The network represents the identified GO and KEGG terms (nodes) and the 

relationship between them (edges) based on similarity of the associated genes/proteins. The node 

size reflects the significance [-log10(p-value)]. The node label and color are the number of proteins 

and the total expression score (TES) of each term, respectively. The node border size reflects the 

average identification frequency (AIF) of the proteins. The edge weight reflects the similarity 

between terms. The dotted red circles indicate the most significant functional groups.  (B) 

Construction and analysis of AML pY-ome interaction network. The TES, AIF and the localization 

information were added to the network and the proteins were arranged based on the cellular 

localization. The node color represents the expression level while the node size represents to 

number of samples where the protein was identified (1 to 12). The node shape represents the 

cellular localization of the protein. Proteins with more than two locations were attributed as ALL 

(represented with circle). The interaction network was constructed by using Cytoscape Genemania 

Application, and with the proteins in the most significant GO terms identified in the pathway 

enrichment analysis. 
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Figure 3.  Protein kinase phosphorylation in AML. Heat map showing the relative abundance of pY 

peptides for the indicated protein kinases that were detected in AML. Phosphopeptides were 

quantified according to integrated extracted ion currents with MaxQuant software and normalized 

to sample starting material. The Blue column on the far right represents  Log10 maximum intensities 

for each phosphor-peptide across all AML samples. The ratio of signals from Group 2 and Group 1 

samples (fourth column) was calculated as the ratio of mean average of quotients of summed signals 

from Group 2 peptides vs. summed signals from Group 1 peptides (Table S5).  In cases of zero 

divisors, a value of 10 was used. In cases of only a single peptide with a zero divisor, the ratio was set 

to >10.  
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Figure 4.  The integrated analysis of protein-tyrosine phosphatases (PTP-ome), relationship among 

pY-ome, kinome and PTP-ome, and AML proteome. (A) Unsupervised clustering of PTP signature 

peptides in the indicated AML samples. (B) Venn analysis showing overlap between proteins 

detected by whole proteome analysis, pY-enrichment (pY-ome), and anti-oxPTP antibody 

enrichment (PTP-ome).  (C) and (D) The correlation of MS intensities derived from all pY-containing 

peptides compared with tyrosine kinase A-loop phospho-peptides (C) or PTP signature peptides (D). 

(E) Heat map of the correlation coefficients between total pY peptides (pY-ome) and kinase pY-

peptides (kinome) or PTP peptides (PTP-ome). Correlations determined by using the Corr() function 

in R.  Sequence frequency analysis is shown for five clusters having more than ten phosphor-tyrosine 

peptides. Sequence logo plots represent amino acid frequencies for 6 amino acids from both sides of 

the phosphorylation site (www.weblogo.berkeley.edu). Asterisks indicate PTPN1 and PTPN2. 

Proteins that contain representative pY sites from the 5 clusters are listed to the right of the 

sequence logos. 
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Table 1.  Proteins highly differentially expressed in Mhigh vs Mlow AML (p<0.01 & |Fold Change|>10) 

Protein Description Annotation 

Unique 

peptides 

Mhigh:Mlow 

Log2 

1 CD11b ITGAM, Integrin alpha-M 
Hematopoietic cell 

lineage 
10 5.84 

2 CD14 Monocyte differentiation antigen 
Hematopoietic cell 

lineage 
11 4.35 

3 CD36 Thrombospondin receptor 
Hematopoietic cell 

lineage 
2 4.15 

4 CD41 ITGA2B, Integrin alpha 2b 
Hematopoietic cell 

lineage 
28 5.76 

5 CD42c GP1BB, Platelet glycoprotein Ib beta chain 
Hematopoietic cell 

lineage 
7 3.77 

6 CD61 ITG3B, Integrin beta-3 
Hematopoietic cell 

lineage 
2 5.43 

7 AZU1 Azurocidin Extracellular 8 5.00 

8 BPI Bactericidal permeability-increasing protein Extracellular 19 6.07 

9 CTSG Cathepsin G Extracellular 22 4.79 

10 CTSS Cathepsin S Extracellular 14 3.87 

11 DEFA1 Neutrophil defensin 1 Extracellular 2 3.60 

12 DEFA3 Neutrophil defensin 3 Extracellular 3 5.96 

http://dx.doi.org/
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13 ELANE Neutrophil elastase Extracellular 12 4.92 

14 FCN1 Ficolin-1 Extracellular 8 4.58 

15 FGA Fibrinogen alpha chain Extracellular 26 3.68 

16 FGB Fibrinogen beta chain Extracellular 22 3.80 

17 FGG Fibrinogen gamma chain Extracellular 23 3.51 

18 HP Haptoglobin Extracellular 19 3.98 

19 LGALS3 Galectin-3 Extracellular 7 3.66 

20 LTF Lactotransferrin Extracellular 63 6.85 

21 LYZ Lysozyme C Extracellular 13 4.42 

22 MMP9 Matrix metalloproteinase-9 Extracellular 20 5.12 

23 MMRN1 Multimerin-1 Extracellular 18 3.94 

24 PF4 Platelet factor 4 Extracellular 4 4.01 

25 PLBD1 Phospholipase B-like 1 Extracellular 16 4.34 

26 PPBP Platelet basic protein Extracellular 8 4.67 

27 S100A8 Protein S100-A8 Extracellular 19 4.93 

28 S100A9 Protein S100-A9 Extracellular 13 6.25 

29 TUBA4A Tubulin alpha-4A chain Extracellular 6 3.81 

30 PRTN3 Myeloblastin Predicted secreted 6 5.05 

31 RNASE3 Eosinophil cationic protein Predicted secreted 9 5.33 

32 BASP1 Brain acid soluble protein 1 Membrane associated 14 3.51 

33 KCTD12 BTB/POZ domain-containing protein Membrane associated 13 4.37 

34 NCF2 Neutrophil cytosol factor 2 Membrane associated 20 4.39 

35 NCF1B Neutrophil cytosol factor 1B (pseudogene product) Membrane associated 2 4.30 

36 RAB27A Ras-related protein Membrane associated 9 3.40 

37 CKAP4 Cytoskeleton-associated protein 4 Transmembrane 23 3.54 

38 CYBB Cytochrome b-245 heavy chain Transmembrane 15 5.87 

39 PLP2 Proteolipid protein 2 Transmembrane 2 3.59 

40 STOM Erythrocyte band 7 integral membrane protein Transmembrane 18 3.65 

41 ANXA3 Annexin A3 Calcium binding 27 4.47 

42 ANXA5 Annexin A5 Calcium binding 19 3.68 
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43 EPX Eosinophil peroxidase Calcium binding 42 4.71 

44 S100A6 Protein S100-A6 Calcium binding 4 5.57 

45 HK3 Hexokinase-3 Metabolic enzyme 26 4.89 

46 SULT1A1 Sulfotransferase 1A1 Metabolic enzyme 4 3.51 

47 TYMP Thymidine phosphorylase Metabolic enzyme 17 5.07 

48 FSCN1 Fascin Cytoskeleton 15 -3.65 

49 TUBB1 Tubulin beta-1 chain Cytoskeleton 21 4.72 

50 MNDA Myeloid cell nuclear differentiation antigen Nuclear antigen 34 6.22 

 

Supplementary information:  6 figures and 9 tables. 

 


