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SUMMARY

Preselection of compounds that are more likely to
induce a phenotype can increase the efficiency and
reduce the costs for model organism screening. To
identify such molecules, we screened �81,000 com-
pounds in Saccharomyces cerevisiae and identified
�7500 that inhibit cell growth. Screening these
growth-inhibitory molecules across a diverse panel
of model organisms resulted in an increased pheno-
typic hit-rate. These data were used to build a model
to predict compounds that inhibit yeast growth.
Empirical and in silico application of the model en-
riched the discovery of bioactive compounds in di-
verse model organisms. To demonstrate the poten-
tial of these molecules as lead chemical probes, we
used chemogenomic profiling in yeast and identified
specific inhibitors of lanosterol synthase and of
stearoyl-CoA 9-desaturase. As community re-
sources, the �7500 growth-inhibitory molecules
have been made commercially available and the
computational model and filter used are provided.

INTRODUCTION

Current methods for identifying lead chemical probes frequently

rely on high-throughput screening against select targets of

interest. This approach assumes that in vitro high potency of

small molecules will translate to low-dose efficacy in vivo.

However, this is often not the case (Gleeson et al., 2011). In

contrast, in vivo model organism screening provides a direct

measure of cellular potency, bypassing the bias of target prese-

lection typically used in modern drug discovery. A growing

number of academic laboratories are pursuing model organism

screens to identify chemical probes for use as powerful molec-

ular tools to probe biological function (Frearson and Collie,

2009). Chemical probes complement standard genetic
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approaches to elucidate gene function while offering distinct

advantages. For example, when applied to a cell or whole

organism, the effects induced by chemical probes are often

rapid, reversible, and tuneable (Morgan et al., 2008; Oprea

et al., 2009; Workman and Collins, 2010). Moreover, chemical

probes can often be transferred across model organisms,

regardless of their genetic tractability (Specht and Shokat,

2002). One drawback of chemical and chemical-genetic screens

is that the percentage of compounds that results in a desired

phenotype is often small; for example, in a Caenorhabditis

elegans study, only 2% of pharmacologically active compounds

resulted in a phenotype (screened at 25 mM) (Kwok et al., 2006)

and in a study using a hyperpermeable Escherichia coli strain,

only 3.5% of compounds (screened at 50 mM) resulted in growth

inhibition (Li et al., 2004). These observations, combined with the

fact that model organism screening can be both compound-

intensive and time-consuming (Burns et al., 2010; Wheeler and

Brändli, 2009) places an emphasis on compound selection

before screening in contrast to typical in vitro high-throughput

screening campaigns (Agresti et al., 2010; Lipinski and Hopkins,

2004) in which the number of total hits is higher and compound

consumption is lower. Such prescreening compound selection

strategies may include enriching for known active substructures

against multiple targets (‘‘privileged structures’’) (Klekota and

Roth, 2008) and/or enriching for compounds most likely to

accumulate in the organism of interest (Burns et al., 2010).

The preselection strategy described here is aimed at in-

creasing the discovery rate of lead chemical probes in model

organisms by first identifying small molecules that inhibit yeast

growth. Growth is a comprehensive phenotype, combining

multiple effects on cellular physiology into a single quantitative

metric (Botstein and Fink, 1988). Moreover, growth measure-

ments can be made in a rapid, high-throughput, and low-cost

manner (Paixão et al., 2008; Proctor et al., 2011). Here, we first

screened�81,000 commercially available synthetic compounds

and identified �7500 compounds that inhibit growth of

S. cerevisiae. It is noteworthy that yeast screens often require

significantly higher doses (approximately 5–10x) compared

with typical mammalian cell culture screens or in vitro assays

(see Figure S1 available online) (Blackburn and Avery, 2003;
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Figure 1. Yactives Enrich for Phenotypes in Diverse Organisms
(A) Phylogenetic tree of the eight organisms screened in this study. Yeast generally requires higher screening concentrations than mammalian screens for similar

inhibition levels, as shown in Figure S1.

(B) Enrichment factor; ratio of hit-rate for yactive compounds compared with randomly selected compounds empirically determined by screening seven

organisms.
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Buurman et al., 2005; Ericson et al., 2008; Kwak et al., 2011).

Although our initial yeast screening concentrations are relatively

high (maximum 200 mM), this high dose does not sacrifice spec-

ificity (Blackburn and Avery, 2003; Botet et al., 2007; Dias et al.,

2010; Dorer et al., 2005; Ericson et al., 2008; Giaever et al., 2004;

Khozoie et al., 2009; Kwak et al., 2011; Murén et al., 2001).

Several biological factors also contribute to yeast’s ability to

resist chemical perturbation, including the physical barrier of

the yeast cell wall (Dielbandhoesing et al., 1998) and a dynamic

defense known as the pleiotropic drug response (PDR). The PDR

is comprised of efflux pumps that reduce the intracellular dose of

a broad spectrum of diverse small molecules (Ernst et al., 2010;

Kolaczkowski et al., 1998; Rogers et al., 2001).

Once we had identified the �7500 yeast bioactives or ‘‘yac-

tives,’’ we then tested the set on a diverse set of model organ-

isms for bioactivity. We found that the yactives significantly

increased phenotypic hit-rates compared with randomly

selected compounds. Using the physicochemical properties of

the yactives, we designed a two-property compound filter based

on a simple modification of the Lipinski’s rule-of-five (Lipinski

et al., 2001) and in addition, we built a Naı̈ve Bayes model to

identify substructures present in yactives. We demonstrate

both empirically and in silico (using publicly available datasets)

that application of the two-property filter and the Naı̈ve Bayes

model result in an enrichment for phenotype-inducing com-

pounds in diverse model organisms. Finally, we address the

question of whether growth inhibitory compounds have the

potential to become specific chemical probe leads by testing

twenty of the most potent growth-inhibitory compounds in vivo

against all �1100 essential yeast proteins using our well-vali-

dated HaploInsufficiency Profiling (HIP) assay (Baetz et al.,

2004; Giaever et al., 1999; Giaever et al., 2004; Lain et al.,

2008; Lum et al., 2004; Xu et al., 2007). Several of these

compounds exhibit specific genome-wide profiles, identifying

candidates for the most likely protein target(s). We pursued

two of the most promising target candidates: one supporting

lanosterol synthase (Erg7 in yeast, mammalian homolog LSS)
1274 Chemistry & Biology 18, 1273–1283, October 28, 2011 ª2011 E
and the second supporting fatty acid desaturase (Ole1 in yeast,

mammalian homolog SCD) as the primary targets. We confirmed

these two targets genetically and in independent secondary

assays. Taken together, our results demonstrate that preselec-

tion and prioritization of compound libraries increase the likeli-

hood of identifying specific chemical probe leads for model

organisms while decreasing overall costs. To disseminate these

tools, the yactives have been made available through Chem-

Bridge, Inc. (San Diego, CA) and we provide a prioritized list

of compounds generated by applying our model to all commer-

cially available small molecules (Irwin and Shoichet, 2005) on our

supplementary website (http://chemogenomics.med.utoronto.

ca/supplemental/bioactive/).

RESULTS

Small Molecules that Inhibit Yeast Growth Increase
the Phenotypic Hit-Rate in Other Model Organisms
To identify small molecules that decrease yeast fitness or growth,

wescreened81,320commercially available syntheticcompounds

(Table S1) and identified 7476 small molecules that inhibit wild-

type (WT) S. cerevisiae growth by at least 30% (IC30) (see Experi-

mental Procedures). We next asked whether this set of yactives

was enriched for molecules that induce a phenotype when tested

across a diverse set of model organisms, spanning substantial

evolutionary distance (Figure 1A). Subsets of the 7476 yactives

were screened against our panel of model organisms (as well as

a human cell line) and the results compared with those obtained

from screening random compounds (Figure 1B; Table S2). Yac-

tives significantly enriched for compounds that inhibited growth

(IC50 or greater) in human A549 non–small-cell lung carcinoma

cells, Schizosaccharomyces pombe, Cryptococcus neoformans,

E. coli, Bacillus subtilis, and Candida albicans. The increase in

phenotypic hit-rate was independent of evolutionary distance.

Notably, in the model metazoan C. elegans (where hit-rate was

determined by visual inspection) the yactives increased the

discovery rate 6.6x over random compounds (Figure 1B).
lsevier Ltd All rights reserved
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Figure 2. A Two-Property Filter Enriches for Yactive Compounds

(A) Distribution plot of LogP for active compounds versus inactive compounds. The shaded region indicates compounds that pass the two-property filter

of R2 LogP, significantly increasing the percentage of phenotypic-inducing compounds. For comparison, the Lipinski limit of %5 is indicated by an arrow.

(B) Histogram showing the percentage of compounds of active compounds versus inactive compounds. The shaded region indicates compounds that pass

the two-property filter of %6 hydrogen acceptors, significantly increasing the fraction of phenotypic-inducing compounds. For comparison, the Lipinski limit

of %10 is indicated by an arrow.
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Physicochemical Properties of Growth-Inhibitory
Compounds
Because the majority of the 81,320 synthetic compounds

screened adhere to Lipinski’s rule-of-five (intended to define

chemical properties that reflect oral bioavailability) (Lipinski

et al., 2001), we asked whether a simple modification of these

rules could be used as a yactive filter. Two of four physicochem-

ical properties that comprise Lipinski’s rule-of-five were sig-

nificantly different (p value < 1 3 10�15) in yactive compounds

versus inactive compounds (Table S3). First, Lipinski’s rule states

that compounds shouldhaveacalculatedoctanol-water partition

coefficient LogP %5. In contrast, yactive compounds are more

lipophilic (mean LogP = 4.0) than inactive compounds (mean

LogP = 3.1) (Figure 2A). This observation suggests that they are

more likely to be passively transported into the cell because their

solubility in a lipid rich-environment would be expected to

contribute to cell permeability (Al-Awqati, 1999; Gamo et al.,

2010; Hacker et al., 2009). Second, Lipinski’s rule includes

compounds that have %10 hydrogen acceptors, whereas yac-

tives are best described using a limit of%6 hydrogen acceptors

(Figure 2B). This decreased number of hydrogen acceptors also

reflects the likelihood that such compounds can be passively

transported across the cell membrane (Muegge, 2003). The

increased hit-rate achieved by applying a two-property filter

based on these observations (compounds pass if they have a

LogP R2 and hydrogen acceptors %6) (12.7% compared with

9.2%, p value < 1 3 10�15, Table S2) prior to purchase would

have reduced the number of compounds screened from 81,320

to 53,480 (a 30% cost savings) while still identifying 91% of the

original 7475 yactives, demonstrating that even such a modest

increase in hit-rate can result in substantial cost savings.

Application of a Naı̈ve Bayes Model Allows Prediction
of Yactives
Encouraged by the increased hit-rate resulting from our two-

property modification of Lipinski’s rule-of-five, we built a Naı̈ve

Bayesmodel to better enable prediction of yactives. Specifically,
Chemistry & Biology 18, 1273–1
in this model, substructures in active compounds are weighted

higher than those found in inactive compounds, resulting in a

prioritized list of compounds for screening. The Naı̈ve Bayes

model was built using the data from our original 81,320 com-

pounds as a training set. ECFP_4 topological fingerprints

(Rogers et al., 2005) were selected to represent substructures

because it outperformed three other representational methods

(Figure 3A). Five-fold cross validation was used, with four-fifths

of the original screening data used as the training set, and the

remaining one-fifth used to test the model’s performance. This

procedure was repeated five times, and the model’s perfor-

mance reported as the average over the iterations. At a cutoff

of the top 10% of ranked compounds, the ECFP_4 model re-

sulted in an enrichment factor of �4.5, defined as �4.5-fold

the number of yactives compared with a random set of

compounds (Figure 3A).

To address potential overestimation bias from using the same

library for model building and testing, we assessed the perfor-

mance of the model on an independent chemical library.

Because this library has different structural property distributions

than the training set, it better represents real-world performance.

To generate this dataset, the Spectrum Library of �2000 com-

pounds was screened against S. cerevisiae to identify yactives

followed by application of the Naı̈ve Bayes model. The top

10% of compounds ranked by the model showed an enrichment

factor of�3.5 for the yactives (Figure 3B). Extending these tests,

we applied our model to publically available chemical screening

data. Specifically, the model was applied to the data from 29

yeast assays available from PubChem (Wang et al., 2010); 23

of the assays were designed to identify modulators of yeast

growth (in mutant backgrounds or in WT strains), and six relied

on readouts other than growth inhibition (see Table S4 for assay

details, Table S5 for two-property filter results, and Table S6 for

Naı̈ve Bayes model results). Our model performed well across

nearly all of these diverse assays, achieving a median enrich-

ment factor 1.85 in the top 10% of compounds ranked

(Figure 3C).
283, October 28, 2011 ª2011 Elsevier Ltd All rights reserved 1275
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five times.
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Predictive Approaches Enrich for Phenotype-inducing
Compounds in Diverse Organisms
We next asked how well the Naı̈ve Bayes model and the two-

property filter enriched for phenotype-inducing compounds

when applied to our data for other model organisms

(S. pombe, B. subtilis, E. coli, and C. elegans). Comparison of

the performance of three approaches (yactives/Naı̈ve Bayes/

two-property filter) revealed that empirical screening of the yac-

tives gave the best performance (median enrichment factor

5.95), the Naı̈ve Bayes model performed nearly as well (median

enrichment factor 4.30), whereas the two-property filter per-

formed appreciably lower (median enrichment factor 1.64) (Fig-

ure 4A; see also Table S2 and Table S7). To avoid overestimating

the level of performance of the Naı̈ve Bayes model as a result of

themodel being tested on the same library as the training set, we

tested the performance using results from nine publicly available

small-molecule screens performed in four organisms (E. coli,

C. elegans, Chlamydomonas reinhardtii, and Danio rerio) from

PubChem (Wang et al., 2010). As was the case in the yeast

assays, the Naı̈ve Bayes model performed best (median enrich-

ment factor 2.10), whereas the two-property filter exhibited only
1276 Chemistry & Biology 18, 1273–1283, October 28, 2011 ª2011 E
modest improvement (enrichment factor 1.28) (Figure 4B; see

also Table S8 and Table S9 for individual results). The increase

in enrichment factors observed across such diverse model

organisms (see also Figures 4A and 4B) demonstrates that these

approaches are broadly generalizable across a very wide range

of model organisms and are therefore valuable methods for

compound selection and prioritization.

Yactives Are a Rich Source of Lead Probes
To be useful as a chemical probe, a compound should act in a

specific manner to inhibit a protein or cellular activity. We there-

fore tested the twenty most potent yactives using our well-vali-

dated genome-wide HaploInsufficiency Profiling (HIP) assay

(Baetz et al., 2004; Giaever et al., 1999, 2004; Lain et al., 2008;

Lum et al., 2004; Xu et al., 2007) to identify candidate protein

targets. The HIP assay allows an unbiased, in vivo quantitative

measure of the relative drug sensitivity of all �1100 essential

yeast proteins in a single assay and results in a list of candidate

protein targets ranked in order of compound sensitivity. The

profiles of the 20 yactives revealed that 13 of the 20 tested

exhibited a degree of specificity for an essential protein or
lsevier Ltd All rights reserved
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details are available in Table S4, results for the two-property filter are in Table S8, and the Naı̈ve Bayes model results are in Table S9.
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protein(s) in the HIP profile and the remaining 7 compounds did

not (Figure S2). We chose the two compounds that exhibited the

highest degree of specificity for detailed follow-up studies. Our

data suggest these compounds target Erg7, lanosterol synthase,

and Ole1, fatty acid desaturase, respectively.

The HIP profile of ChemBridge 95809153 (ERG7.153, Fig-

ure 5A) supports Erg7 as the most likely target. ERG7 encodes

lanosterol synthase, an essential protein involved in ergosterol

biosynthesis (Lees et al., 1995), a pathway exhibiting structural

and functional conservation with the biosynthesis of cholesterol

in human. Erg7 performs an essential step in ergosterol biosyn-

thesis and holds promise as an antifungal target based on the

success of antifungal agents that target other steps of this

pathway (Jolidon et al., 1990; Voyron et al., 2010). In addition,

the human homolog of Erg7 (LSS, lanosterol synthase BLASTP

e-value 5e-148) has potential therapeutic relevance as a choles-

terol-lowering agent (Charlton-Menys and Durrington, 2007).

Two supporting studies demonstrated that compounds sharing

structural similarity to ERG7.153 inhibit lanosterol synthase (Fig-

ure S3A). One of these compounds was demonstrated to inhibit

lanosterol synthase (Erg7) in C. albicans (Buurman et al., 2005),

whereas the other was shown to inhibit the human lanosterol

synthase, LSS (Fouchet et al., 2008) (Figure S3A). To genetically

confirm that ERG7.153 inhibits Erg7, we tested the individual

erg7 heterozygous deletion for the expected compound hyper-

sensitivity to the WT (Figure S3B). Because ERG7.153 was not

available for resupply, we carried out further testing with a close

analog, CB 83425298 (ERG7.298), which induced similar hyper-

sensitivity in the S. cerevisiae erg7D heterozygous deletion strain

(Figure 5B). Analogous growth assays of an erg7D heterozygous

deletion mutant and a conditional promoter shut-off allele in the

human fungal pathogen C. albicans also exhibited hypersensi-

tivity to compound, providing several lines of gene-dose support

for Erg7 as the drug target of ERG7.153 and ERG7.298 (Fig-

ure 5B). Two additional heterozygous deletion strains, neo1D
Chemistry & Biology 18, 1273–1
and pik1D, encoding a putative aminophospholipid translocase

(flippase) (Paulusma and Oude Elferink, 2005) and a phosphati-

dylinositol 4-kinase (Flanagan et al., 1993), respectively, are

also sensitive to ERG7.153. Both of these genes have been

previously classified as multidrug-resistant (MDR) (Hillenmeyer

et al., 2008). In this study, neo1D heterozygous deletion strain

was sensitive in 14 of 20 profiles (70%) and the pik1D heterozy-

gous deletion strain sensitive to 7 of 20 (35%) compounds

tested.

To independently test whether Erg7 is the target of ERG7.298,

we analyzed the lipid metabolites from cells grown in the pres-

ence of this inhibitor (Figure 5C) by mass spectrometry. As

predicted for a bona fide Erg7 inhibitor, the substrate of Erg7 (ox-

idosqualene) showed significant accumulation in the presence of

inhibitor compared with vehicle alone. As a positive control, the

level of oxidosqualene was measured in cells treated with ceri-

vastatin, which inhibits HMG-CoA reductase, the rate-limiting

step of the ergosterol and cholesterol biosynthetic pathways

(Endo, 1988). As expected, cells treated with cerivastatin did

not accumulate oxidosqualene. Relative measurements of

ergosterol, the end product of the ergosterol biosynthetic path-

way, showed depletion in cells treated with the Erg7 inhibitor

and with cerivastatin. Finally, we were able to partially rescue

the growth defect caused by cerivastatin and ERG7.298 by add-

ing ergosterol to the growth medium. Although yeast does not

typically incorporate exogenously supplied lipids, we used a

S. cerevisiae strain carrying the upc2-1 mutation (Li and Prinz,

2004) (Figure 5D; Figure S3C), which allows cells to take up

exogenously supplied sterols under aerobic growth conditions

(Crowley et al., 1998).

A second HIP profile supports Ole1 as a likely protein target

(Figure 6A) of a novel compound. Ole1 encodes the yeast delta(9)

fatty acid desaturase, which converts stearic acid to oleic acid

and which has previously been proposed as a potential anti-

fungal target (Hu et al., 2007). Furthermore, the human homolog
283, October 28, 2011 ª2011 Elsevier Ltd All rights reserved 1277
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performed in triplicate; the error bars represent the standard deviation.

(D) Dose-response curve of cerivastatin and ERG7.298 in the upc2-1 strain grown with and without 20 mg/ml ergosterol. The fitness was calculated as in (B), the

experiment was performed in triplicate, the error bars represent the standard deviation. Additional information can be found in Figure S3.
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of Ole1, SCD (stearoyl-CoA desaturase, BLASTP e-value 3e-52),

has attracted interest for its potential modulation for the treat-

ment of diabetes (Lenhard, 2011; Ntambi et al., 2002). Two other

heterozygous deletion strains unrelated to fatty acid desaturase

inhibition, (lsg1D and rpb8D) are sensitive to this compound.

Given that both of these genes encode ribosomal components

that frequently come up as sensitive in diverse chemical screens

(unpublished data), they were not further pursued in this study.

We used a S. cerevisiae ole1 DAmP loss-of-function allele

(Schuldiner et al., 2005; Yan et al., 2008) to confirm compound

hypersensitivity. Hypersensitivity was also seen with an ole1

conditional promoter shut-off allele in C. albicans, further sup-

porting Ole1 as the target of OLE1.041(CB 11119041) (Xu

et al., 2009) (Figure 6B). This compound was also effective

in vitro, inhibiting the enzymatic activity of Ole1 in S. cerevisiae,

C. albicans, and human HepG2 cells (Figure 6C). Finally, we

found that two C. elegans mutants with reduced stearoyl-CoA

desaturase activity (fat-5;fat-7 and fat-5;fat-6) (Brock et al.,

2006) are hypersensitive to OLE1.041 (Figure 6D). These two

examples highlight the ability of the HIP assay to identify addi-
1278 Chemistry & Biology 18, 1273–1283, October 28, 2011 ª2011 E
tional effects that can be monitored during compound

optimization.

DISCUSSION

Compounds that inhibit yeast growth are more likely to induce

phenotypes in other model organisms. Modeling the properties

of the subset of drug-like compounds that inhibit yeast

growth allows prioritization of compounds for model organism

screening, reducing screening costs, and increasing efficiency.

Over time, as the research community accumulates compound

screening data, thesemodels can be refined to be both organism

and phenotype-specific, resulting in increasing the predictability

and accuracy. As an important first step, we have demonstrated

that compounds that inhibit yeast growth are more likely to

induce phenotypes of interest in other model organisms and in

mammalian cell culture assays. In order to address whether

the inhibitory compounds we identified could act in a specific

manner, we followed up on two compounds that looked particu-

larly promising based on their genome-wide profile of drug
lsevier Ltd All rights reserved



BA
OLE1

RPB8

LSG1

2

1

2

3

C

0

5

10

15

20

25

30

35

40

wt
fat-5;fat-7

fat-5;fat-6

 OLE1.041 (µM)

# 
of

 V
ia

bl
e 

An
im

al
s

0 5 10 50 100 150 200 250

*
*

*

N

N

N
O

N

0 1 3

D

Fi
tn

es
s

 OLE1.041 (µM)

0

20

40

60

80

0.1 1 10 100 1000
OLE1.041 (µM)

S.c. wt
C.a. wt
HepG2

%
 In

hi
bi

tio
n 

SA
   

  O
A

Log  (control/OLE1.041 at 30µM)2

Lo
g 

 (c
on

tro
l/O

LE
1.

04
1 

at
 3

5µ
M

)
2

0

0.2

0.4

0.6

0.8

1

1 10 100

S.c. DAmP
C.a. wt
C.a. GRACE

S.c. wt

Figure 6. Identification of a Novel Inhibitor of Delta(9) Fatty Acid Desaturase (Ole1)

(A) Chemical structure of OLE1.041 and the HIP results for this compound performed using 30 and 35 mM OLE1.041, details as in Figure 5A. All 20 HIP profiles

generated in this study are shown in Figure S2.

(B) Dose-response curve for OLE1.041 inWT strains of S. cerevisae (S.c.) compared with the ole1DAmP strain andC. albicans (C.a.) WT strain compared with the

ole1 GRACE strain, details as in Figure 5B.

(C) Percent inhibition of radiolabelled stearic acid to oleic acid conversion by OLE1.041 in vivo in S. cerevisiae, C. albicans, and human HepG2 cells. The

experiment was performed in duplicate for S. cerevisiae and quadruplicate for C. albicans and HepG2; the error bars represent the standard deviation.

(D) Phenotypic analysis of OLE1.041 inC. elegansWT, fat-5;fat-7 and fat-5;fat-6mutant strains. The bar graph shows the number of viable animals remaining after

treatment with a DMSO control and across a range of OLE1.041 concentrations. Significant differences (p-value < 0.05) between the WT and mutant strains are

indicated with an asterisk (*). The error bars represent the standard deviation in repeating the experiment in triplicate.
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sensitivity. The mechanism of action of these compounds

(ERG7.298, OLE1.041) was shown to be consistent with inhibi-

tion of their presumed molecular targets in both genetic and

cellular biochemical assays. Both ERG7 and OLE1 are highly

conserved with human LSS and SCD and represent recognized

targets of medical relevance. ERG7 and LSS inhibitors have clin-

ical relevance as potential antifungal and anticholesterol

lowering agents, respectively, while the human homolog of

OLE1, SCD, may represent a potential target for diabetes

treatment.

The identification of two compounds that act with a high

degree of specificity in a relatively short experimental time frame

underscores the benefits of prioritizing compounds. While no

filtering or prioritization method can trump an exhaustive

screening campaign and perfectly predict all compounds of

interest, our results clearly indicate that preselection methods,

when applied across diverse assays and organisms, can identify

and prioritize those compounds most likely to induce a pheno-

type. The advantage of using such compounds as starting points

for chemical probe discovery in model organisms is that a wide

variety of genetic tools in different organisms can be used to vali-

date the mode of action, as well as to identify off-target effects.
Chemistry & Biology 18, 1273–1
To provide a publicly accessible resource, we applied our two-

property filter and our Naı̈ve Bayes model to compounds avail-

able in (1) the NIH Molecular Screening program (Austin et al.,

2004) and (2) the Zinc catalog of approximately 14 million

purchasable compounds (Irwin and Shoichet, 2005). These

results are available on our website (http://chemogenomics.

med.utoronto.ca/supplemental/bioactive/).

Finally, a primary goal of this work was to encourage com-

pound suppliers to provide libraries directed at model organism

screening to the research community. Toward this end, Chem-

Bridge, Inc. has agreed to make our �7500 yactive compounds

available for purchase as a preplated compound set. This library

should prove a valuable resource for chemical screening labs

working to develop chemical probes using model organisms.

SIGNIFICANCE

We have presented three approaches, based on yeast

growth inhibition, to guide compound selection to reduce

the costs associated with model organism screening pro-

grams. First, we have demonstrated that compounds that

inhibit yeast growth are enriched for compounds that induce
283, October 28, 2011 ª2011 Elsevier Ltd All rights reserved 1279
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a variety of phenotypes in diverse model organisms, and

these compounds, with further optimization, may yield

specific chemical probes. The first approach is then to

simply screen compounds for those that inhibit yeast

growth. A second approach is to prioritize compounds

based on those that pass the two-property filter described

here. This approach, depending on the model organism,

can decrease costs by �25% and is straightforward to

implement. The third approach is to purchase compounds

based on their likelihood to result in a desired phenotype

by applying our Naı̈ve Bayes model. This approach can

also dramatically reduce costs. Newly generated screening

data can be used to rebuild the model described here in

the context of the model organism of interest to increase

performance. This iterative approach is key because no

model will perform optimally in all applications. Finally, as

an experimental resource the yactive compounds are avail-

able as a preplated collection fromChemBridge, and a list of

14 M purchasable compounds scored by our Naı̈ve Bayes

model and two-property filter is available for download

from our website (http://chemogenomics.med.utoronto.ca/

supplemental/bioactive/).

EXPERIMENTAL PROCEDURES

Reagents, Strains, and Equipment

The chemical libraries screened were obtained from ChemDiv (Divers, San

Diego, CA) and ChemBridge (NOVACore and DIVERSet, San Diego, CA) in

a 96-well format at 10 mM in DMSO. The Spectrum library (Microsource,

Gaylordsville, CT) of 2000 compounds was supplied at 2.5 mM in DMSO

and was a gift from D. Desveaux and D. Guttman (University of Toronto).

E. coli strain BW25113 (Datsenko and Wanner, 2000) (lacIq rrnBT14

DlacZWJ16 hsdR514 DaraBADAH33 DrhaBADLD78) was a gift from Andrew Emili

(University of Toronto), S. pombe strain TK1/972 (h-) was a gift from Charlie

Boone (University of Toronto), and B. subtilis strain 168 1A700 (trpC2) was

a gift from Alex ter Beek and Gertien Smits (University of Amsterdam).

C. albicans heterozygous deletion (Xu et al., 2007) and conditional shut-off

or GRACE mutants (Roemer et al., 2003) in the SC5314 background were

a gift from Terry Roemer (Merck-Frosst Canada, Ltd.). C. neoformans strain

H99 was a gift from Joseph Heitman (Duke University). A549 human lung

cancer cells (ATCC number: CCL-185) and HepG2 cells (ATCC number HB-

8065) were obtained from American Type Culture Collection (ATCC, Rockville,

MD). S. cerevisiae WPY361 (MATa upc2-1 ura3-1 his3-11,-15 leu2-3,-112

trp1-1) was a gift from William Prinz (NIH, Bethesda, MD) (Li and Prinz,

2004). The BX110 fat-7(wa36);fat-5(tm420)V double, the BX160 fat-6(tm331)

IV;fat-5(tm420)V double, and the WT (N2) worm strains were obtained from

the C. elegans Genetics Center (University of Minnesota) maintained at 20�C
using standard techniques (Lewis and Fleming, 1995).

Growth assays were performed in clear, flat-bottom 48-, 96-, and 384-well

microplates (Greiner) sealed with adhesive plate seals (Cat. No. AB-0580, AB-

gene) using a custom developed platform incorporating microplate readers

GENios, Infinite, and Safire2 (Tecan-US, Durham, NC) and the Packard Multip-

robe II four-probe liquid-handling system (PerkinElmer, Waltham, MA).

Genome-wide assays were analyzed on Genflex_Tag_16K_dev microarrays

(Item No. 511331, Affymetrix, Santa Clara, CA) using GeneChip Fluidics

Station 450 and GeneChip Scanner 3000 (Affymetrix). For protocol detail see

Pierce et al., (2007).

Screening Chemical Libraries on S. cerevisiae

Our WT yeast strain, BY4743 (MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/

lys2D0 met15D0/MET15 ura3D0/ura3D0), was grown in YPD medium at

30�C. 20 mM HEPES pH 7.0 was added to the YPD medium as indicated in

the Supplemental Information. Cells were diluted from a fresh overnight culture

to 0.0625 OD595 in a final volume of 100 ml for 96-well and 30 ml for 384-well
1280 Chemistry & Biology 18, 1273–1283, October 28, 2011 ª2011 E
plates. Compounds were added to the culture using a 2 ml or 600 nl pin tool

(V&P Scientific, San Diego, CA) for 96-well or 384-well microplates, respec-

tively, to dilute the compounds 50 times to a final DMSO concentration of

2%. The ChemDiv Diverse, NOVACore SAR, and NOVACore DIVERSet

libraries were screened at 200 mMfinal concentration, and the Spectrum library

was screened at 50 mMfinal concentration. Yeast growthwasmonitored for up

to 24 hr by measuring the OD595 every 15 min as described (Giaever et al.,

2004; Lee et al., 2005). The majority of the compounds screened were soluble

at 200 mM, with less than 8% of compounds having a starting optical density

that was significantly different from the DMSO controls, indicating that, at

this dose, either the compound had a color, or solubility was an issue.

The fitness of BY4743 in compound was expressed as the ratio of the

average generation time (AvgG) (AvgG reference/AvgG compound), where

the reference condition was grown on the same plate in 2% DMSO. Average

generation time is calculated by (time to five generations/5) (Lee et al.,

2005). A compound was scored as active when the ratio AvgG was 0.7 or

less, corresponding to an IC30 or greater. Automatic flagging of actives was

confirmed by visual inspection of the data.

Screening Chemical Libraries on E. coli, B. subtilis, S. pombe,

C. albicans, C. neoformans, C. elegans, and Human Cell Line A549

Compounds scored as growth inhibitory were transferred to a new 96-well

microplate, the hit-plate. Hit-plates and random naı̈ve plates were screened

at 200 mM final concentration on E. coli strain BW25113 grown in Luria broth

(LB), B. subtilis strain 1A700 grown in nutrient broth (NB), S. pombe strain

TK1 grown in YES medium, S. cerevisiae strain BY4743, C. neoformans strain

H99, and C. albicans strain HIS3 grown in YPD medium. All media were buff-

ered with 20 mM HEPES pH 7 and growth temperature was 37�C for bacteria

and 30�C for yeast.

A compound was considered active in S. pombe, C. albicans,

C. neoformans, E. coli, or B. subtilis if the area under the growth curve after

20 hr of growth was 50% of that compared with the DMSO control (ratio

[compound/control] <0.5). Compounds that showed a high ratio, defined

as >1.2, were excluded. We found the area under the growth curve to be

a more robust method for measuring growth rate in the other organisms

than the ratio AvgG. A value of 0.5 gives a similar hit-rate as a ratio AvgG of

0.7 in S. cerevisiae.

Phenotypic screening of C. elegans was performed as reported previously

(Kwok et al., 2006). In brief, molecules were screened in duplicate in 24-well

format at 25 mM concentration. Two L4 stage N2 animals were deposited

per well on agar and the progeny were visually assessed for phenotype,

including slow growth, egg laying abnormalities, and embryonic lethality, using

an MZ12 dissection microscope (Leica Microsystems GmbH, Wetzlar,

Germany).

A549 human lung cancer cells were maintained in Dulbecco’s Modified

Eagle medium (Wisent, St-Bruno, QC, Canada) supplemented with 10% fetal

bovine serum (Wisent) and 100 U/ml penicillin/streptomycin (Wisent) in a

humidified incubator with 5% CO2 at 37
�C. The cells were seeded in 96-well

plates with a density of 2200 cells per well and treated for 48 hr with 50 mM

compound in 0.5% DMSO. Cell survival was measured using the Sulforhod-

amine B (SRB) colorimeteric assay (Vichai and Kirtikara, 2006) and readout

using a SpectraMax Plus384 (Molecular Devices, Sunnyvale, CA) with the

following modification: the cells were stained with 50 ml of 0.4% SRB. Actives

for the A549 cells were defined as compounds causing %50% viability after

48 hr of growth in the presence of the compound.

HaploInsufficiency Profiling Assay

By serial dilution of 16 hit-plates, each containing �86 active compounds, 79

compounds were found to completely inhibit the growth of WT S. cerevisiae at

a four-fold dilution (50 mM). 20 diverse compounds were selected for testing in

the HIP assay. The molecular weights of these 20 compounds were verified by

liquid chromatography and mass spectrometry to confirm their structure (see

Supplementary Methods).

The HIP assay was performed as previously described (Pierce et al., 2007).

Two biological replicates were generated for each compound condition. A

significant hit is defined as a gene with a log2 ratio >1 of the intensity of the

DMSO control intensity/drug treatment intensity in both replicates. All raw

and ratio data files are available on the supplementary website. All HIP profiles
lsevier Ltd All rights reserved
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are shown in Figure S2. In addition, the microarray data is available on

ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/).

Computational Analysis

All chemical analysis and Naı̈ve Bayesmodel building was performed using the

cheminformatic package in Pipeline Pilot version 6.1 (Scitegic Inc. Accelyrs,

San Diego, CA). Marvin version 5.4.1 (ChemAxon, http://www.chemaxon.

com) was used for drawing and displaying chemical structures.

Pipeline Pilot was used to standardize the representation of all compounds

studied including removing inorganic compounds, salts, and duplicates. All

data used for the model building are available on our supplementary website.

Three methods were tested to represent molecules for the Naı̈ve Bayes model

using five-fold cross validation: (1) a vector constructed from physical proper-

ties for each compound (LogP, Molecular Weight, Molecular Polar Surface

Area, Molecular Solvent Accessible Area, the number of Hydrogen acceptors

and donors, the number of rotatable bonds, the number of rings, and the

number of aromatic rings); (2) a vector based on MDL Public Keys (Durant

et al., 2002), where the presence or absence of specific substructures is re-

corded; and (3) a vector using the Extended Connectivity Fingerprints (Rogers

et al., 2005) method, where the compound is represented by overlapping frag-

ments of a diameter of up to two-fourths bond lengths (ECFP_2/ECFP_4). The

enrichment factor was used as a measure of accuracy. This is calculated by

ranking the library of compounds to be tested by the model score. Next, for

different thresholds, the number of observed actives was compared with the

number of actives expected by random selection.

Tanimoto coefficient, also known at the Jaccard Coefficient (Rogers and

Tanimoto, 1960), was used to calculate the similarity between two compounds

and was calculated based on the number of features in common between the

compounds divided by the total number of features present.

LogP valueswere calculated using theGhose andCrippen algorithm (Viswa-

nadhan et al., 1989).

Statistical Analysis

The significance of the effect of the two-property and Lipinski filters was calcu-

lated using the hypergeometric test, termed the phyper function, in R. To test

whether the distribution of LogP and the number of hydrogen acceptors for

active and inactive compounds was significantly different, a two-sample

Kolmogorov-Smirnov test (Durbin, 1973) was implemented using R.

Website

All of the data used in this study is available at http://chemogenomics.med.

utoronto.ca/supplemental/bioactive/.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, nine tables, and Supple-

mental Experimental Procedures and can be found with this article online at

doi:10.1016/j.chembiol.2011.07.018.
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