1680
Comment:
|
← Revision 17 as of 2011-01-21 15:36:06 ⇥
4471
|
Deletions are marked like this. | Additions are marked like this. |
Line 7: | Line 7: |
http://www.ncbi.nlm.nih.gov/sites/entrez/20940738 | |
Line 16: | Line 17: |
Other papers * Why olfactory receptors as false positives<<BR>> PLoS Genet. 2008 Nov;4(11):e1000249. Epub 2008 Nov 7.<<BR>> High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution.<<BR>> Hasin Y, Olender T, Khen M, Gonzaga-Jauregui C, Kim PM, Urban AE, Snyder M, Gerstein MB, Lancet D, Korbel JO. |
|
Line 22: | Line 28: |
PMID: 21092299 | |
Line 26: | Line 33: |
== Network Propagation Algorithms == * '''cancer mutations''' * Vandin F, Upfal E, Raphael BJ<<BR>> Algorithms for Detecting Significantly Mutated Pathways in Cancer<<BR>> LECTURE NOTES IN BIOINFORMATICS 2010, Volume: 6044, Pages: 506-521<<BR>> [[http://www.springerlink.com/content/u7k4802m2np6/#section=696907&page=1&locus=0|PDF]] * '''signaling''' * Stojmirović A, Yu YK.<<BR>> Information flow in interaction networks.<<BR>> J Comput Biol. 2007 Oct;14(8):1115-43.<<BR>> http://www.ncbi.nlm.nih.gov/pubmed/17985991 * Stojmirović A, Yu YK.<<BR>> ITM Probe: analyzing information flow in protein networks.<<BR>> Bioinformatics. 2009 Sep 15;25(18):2447-9. Epub 2009 Jun 27.<<BR>> http://www.ncbi.nlm.nih.gov/pubmed/19561335 == Other paper to look at == * Interesting large data-set<<BR>> Nature. 2010 Apr 1;464(7289):713-20.<<BR>> Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.<<BR>> Wellcome Trust Case Control Consortium,<<BR>> http://www.ncbi.nlm.nih.gov/pubmed/20360734 * Bioinformatics challenges for genome-wide association studies.<<BR>> Moore JH, Asselbergs FW, Williams SM.<<BR>> Bioinformatics. 2010 Feb 15;26(4):445-55. Epub 2010 Jan 6.<<BR>> http://bioinformatics.oxfordjournals.org/content/26/4/445.abstract * Functional genomics complements quantitative genetics in identifying disease-gene associations.<<BR>> Guan Y, Ackert-Bicknell CL, Kell B, Troyanskaya OG, Hibbs MA.<<BR>> PLoS Comput Biol. 2010 Nov 11;6(11):e1000991<<BR>> http://www.ncbi.nlm.nih.gov/pubmed/21085640 * Pathway-based analysis using reduced gene subsets in genome-wide association studies <<BR>> http://www.biomedcentral.com/1471-2105/12/17/abstract == Gene-set Tests for GWAS == Not in the Mendeley collection: * Pathways of Distinction Analysis: a new technique for multi-SNP analysis of GWAS data<<BR>> http://arxiv.org/abs/1012.4726 Better publication probably coming soon: * MAGENTA <<BR>> Ayellet V. Segrè, DIAGRAM Consortium, MAGIC investigators, Leif Groop, Vamsi K. Mootha, Mark J. Daly, and David Altshuler (2010). <<BR>> Common Inherited Variation in Mitochondrial Genes is not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits. <<BR>> PLoS Genetics Aug 12;6(8). pii: e1001058. <<BR>> |
Association Analysis for Rare Variants
Statistical analysis strategies for association studies involving rare variants.
Bansal V, Libiger O, Torkamani A, Schork NJ.
Nat Rev Genet. 2010 Nov;11(11):773-85. Epub 2010 Oct 13. Review.
PMID: 20940738 http://www.ncbi.nlm.nih.gov/sites/entrez/20940738- focused on single nucleotide rare variants
links to > 10 association tests at the gene or genomic area level, with correction or subpopulation and covariates
- quite of an effort to understand and follow up on all the methods referenced
- briefly mentions pathway analysis (ref to Autism Nature paper)
An evaluation of statistical approaches to rare variant analysis in genetic association studies.
Morris AP, Zeggini E.
Genet Epidemiol. 2010 Feb;34(2):188-93.
PMID: 19810025
Gene-set Association Tests for Rare Variants
Other papers
Why olfactory receptors as false positives
PLoS Genet. 2008 Nov;4(11):e1000249. Epub 2008 Nov 7.
High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution.
Hasin Y, Olender T, Khen M, Gonzaga-Jauregui C, Kim PM, Urban AE, Snyder M, Gerstein MB, Lancet D, Korbel JO.
Similar Gene-set Analysis Strategies for Genetics Data
Cancer Mutations
Patient-oriented gene set analysis for cancer mutation data
Boca SM, Kinzler K, Velculescu VE, Vogelstein B, Parmigiani G.
Genome Biol. 2010 Nov 23;11(11):R112.
PMID: 21092299 http://www.ncbi.nlm.nih.gov/sites/entrez/21092299- It's basically the same idea applied to cancer instead of autism.
- However, lacking the control patients (since cancer is high mutation frequency, that would not make sense), they have to define the null hypothesis using randomly placed mutations.
- What they call "exclusivity principle" is what I usually call the "OR combination logic" (i.e. at least one perturbed gene for the pathway/gene-set to be perturbed).
Network Propagation Algorithms
cancer mutations
Vandin F, Upfal E, Raphael BJ
Algorithms for Detecting Significantly Mutated Pathways in Cancer
LECTURE NOTES IN BIOINFORMATICS 2010, Volume: 6044, Pages: 506-521
PDF
signaling
Stojmirović A, Yu YK.
Information flow in interaction networks.
J Comput Biol. 2007 Oct;14(8):1115-43.
http://www.ncbi.nlm.nih.gov/pubmed/17985991Stojmirović A, Yu YK.
ITM Probe: analyzing information flow in protein networks.
Bioinformatics. 2009 Sep 15;25(18):2447-9. Epub 2009 Jun 27.
http://www.ncbi.nlm.nih.gov/pubmed/19561335
Other paper to look at
Interesting large data-set
Nature. 2010 Apr 1;464(7289):713-20.
Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.
Wellcome Trust Case Control Consortium,
http://www.ncbi.nlm.nih.gov/pubmed/20360734Bioinformatics challenges for genome-wide association studies.
Moore JH, Asselbergs FW, Williams SM.
Bioinformatics. 2010 Feb 15;26(4):445-55. Epub 2010 Jan 6.
http://bioinformatics.oxfordjournals.org/content/26/4/445.abstractFunctional genomics complements quantitative genetics in identifying disease-gene associations.
Guan Y, Ackert-Bicknell CL, Kell B, Troyanskaya OG, Hibbs MA.
PLoS Comput Biol. 2010 Nov 11;6(11):e1000991
http://www.ncbi.nlm.nih.gov/pubmed/21085640Pathway-based analysis using reduced gene subsets in genome-wide association studies
http://www.biomedcentral.com/1471-2105/12/17/abstract
Gene-set Tests for GWAS
Not in the Mendeley collection:
Pathways of Distinction Analysis: a new technique for multi-SNP analysis of GWAS data
http://arxiv.org/abs/1012.4726
Better publication probably coming soon:
MAGENTA
Ayellet V. Segrè, DIAGRAM Consortium, MAGIC investigators, Leif Groop, Vamsi K. Mootha, Mark J. Daly, and David Altshuler (2010).
Common Inherited Variation in Mitochondrial Genes is not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits.
PLoS Genetics Aug 12;6(8). pii: e1001058.