Illumina Gene Expression Array Data Analysis using R
- Experimental design and data - Platform: Illumina BeadChips 
- Design: patients, groups (markers), and chips
- Files (txt files) - raw data: each gene corresponds to one row.
- sample names and array barcodes
- annotation file
 
 
- Data preprocessing using lumi package - Data input: using function lumiR or lumiR.batch
- Preprocessing - using encapsulating function lumiExpresso
- Functions lumiB (background correction), lumiT (variance stabilizing transform), lumiN (normalization) and lumiQ (quality control), designed for preprocessing and quality control
 
- Filtering - remove the undetectable (unexpressed) genes based on detection pvalue threshold given by - quantile of all p-values, e.g., 50% quantile if the half of total probes are not detectable
- false positive rate, e.g., threshold = 0.10 (p-values follow an uniform distribution under null hypothesis)
 
- remove technical replicates and/or irrelevant patients
 
- remove the undetectable (unexpressed) genes based on detection pvalue threshold given by 
- Visualizing - using function plot, including density, boxplot, MAplot, pair, and sampleRelation. See the details using help("plot-methods").
- boxplot and density plot of both raw and normalized intensities on log2 scale
 
- Clustering - Using function plotSampleRelation: estimate the sample relations based on selected probes (based on large coefficient of variance (mean/standard variance)). Two methods can be used: MDS (Multi-Dimensional Scaling) or hierarchical clustering methods. Example: plot(lumi.data.object, what='sampleRelation', cv.Th = 0.10)
- Detect the outlier: The current outlier detection is based on the distance from the sample to the center (average of all samples after removing 10 percent samples farthest away from the center). Example: temp <- detectOutlier(lumi.data.object, ifPlot=TRUE); any(temp) #if FALSE, there does not exist an outlier. 
- Using function hclust (cluster samples using Euclidean distance) Exampe: X <- exprs(lumi.data.object); temp <- hclust(dist(t(X)), method="average"); plot(temp) 
- Using principal component analysis (PCA) Example: X <- exprs(lumi.data.object); temp <- prcomp(t(X), scale=TRUE); groupColors <- palette(rainbow(length(levels(group)))) - Clusters using two components: plot(temp$x[, 1:2], col=groupColors[group], pch=19, main="PCA"); legend("topright", levels(group), col=groupColors, pch=19)
- Clusters using three components: scatterplot3d(temp$x[, 1:3], color=groupColors[group], pch=19, main="PCA"); legend("topleft", levels(group)), col=groupColors, pch=19)
 
 
 
- Statistical analysis of differential expressions using limma package - Model design matrix generated using function model.matrix - define three factor variables: patient, marker (or group), and chip
- unpaired design: design <- model.matrix(~ 0 + marker + chip) 
- paired design: the patient or sample effects may be different when measured twice or more. - design <- model.matrix(~ 0 + marker + chip + patient) 
 
 
- Fitting linear models - fit <- lmFit(X, design) 
- X: a matrix of gene expressions, each row consists of expressions of one gene.
- For gene i, fitting a linear model: x_i= design * b_i + e_i
 
- Fitting contrasts (e.g., 3 contrasts) - contrasts <- c("marker3-marker1", "marker3-marker2", "marker2-marker1") 
- contrast.matrix <- makeContrasts(contrasts = contrasts, levels=design) 
- fit1 <- contrasts.fit(fit, contrast.matrix) 
 
- Empirical Bayes - fit2 <- eBayes(fit1) 
 
- Generating a top table with adjusted p-values and combining with annotations of interest - topfit based on F-statistic - topfit <- topTable(fit2, number=nrow(X), adjust="BH") 
 
- topfit based on t-statistic for each contrast (e.g., contrast k) - topfit <- topTable(fit2, number=nrow(X), adjust="BH", coef=k) 
 
- combining with annotations and mean expressions - cbind(annotations, mean.expressions, topfit)
 
 
- topfit based on F-statistic 
 
- Model design matrix generated using function model.matrix 
References
Du (2008) lumi: a pipeline for processing Illumina microarray, Bioinformatics. 
 Du et al. (2014) Using lumi, a package processing Illumina microarray 
 Du et al. (2014) Evaluation of VST algorithm in lumi package 
 Lin at al. (2008) Model-based variance-stabilizing transformation for Illumina microarray data, Nucleic Acids Res. 
 Smyth et al. (2014) limma: linear models for microarray data user’s guide 
 Smyth (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments, Stat Appl Genet Mol Biol. 
 
